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PREFACE TO THE THIRD EDITION

and summary of prefaces to the first two editions

This book, through its several editions, has continued to adapt to
evolving areas of research in epidemiology and statistics, while main-
taining the original objective of being non-threatening, understandable
and accessible to those with limited or no background in mathematics.
Two new areas are covered in the third edition: genetic epidemiology
and research ethics.

With the sequencing of the human genome, there has been a flow-
ering of research into the genetic basis of health and disease, and espe-
cially the interactions between genes and environmental exposures.
The medical literature in genetic epidemiology is vastly expanding and
some knowledge of the epidemiological designs and an acquaintance
with the statistical methods used in such research is necessary in order
to be able to appreciate new findings. Thus this edition includes a new
chapter on genetic epidemiology as well as an Appendix describing the
basics necessary for an understanding of genetic research. Such mate-
rial is not usually found in first level epidemiology or statistics books,
but it is presented here in a basic, and hopefully easily comprehensible
way, for those unfamiliar with the field. The second new chapter is on
research ethics, also not usually covered in basic textbooks, but crit i-
cally important in all human research. New material has also been
added to several existing chapters.

The principal objectives of the first edition still apply.  The presenta-
tion of the material is aimed to give an understanding of the underlying
principles, as well as practical guidelines of “how to do it” and “how to
interpret it.” The topics included are those that are most commonly
used or referred to in the literature. There are some features to note
that may aid the reader in the use of this book:

(a) The book starts with a discussion of the philosophy and logic of
science and the underlying principles of testing what we believe against
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the reality of our experiences. While such a discussion, per se, will not
help the reader to actually “do a t -test,” I think it is important to provide
some introduction to the underlying framework of the field of epidemi-
ology and statistics, to understand why we do what we do.

(b) Many of the subsections stand alone; that is, the reader can turn to
the topic that interests him or her and read the material out of sequen-
tial order. Thus, the book may be used by those who need it for special
purposes. The reader is free to skip those topics that are not of interest
without being too much hampered in further reading. As a result there
is some redundancy. In my teaching experience, however, I have found
that it is better to err on the side of redundancy than on the side of
sparsity.

(c) Cross-references to other relevant sections are included when addi-
tional explanation is needed. When development of a topic is beyond the
scope of this text, the reader is referred to other books that deal with the
material in more depth or on a higher mathematical level. A list of rec-
ommended texts is provided near the end of the book.

(d) The appendices provide sample calculations for various statistics
described in the text. This makes for smoother reading of the text,
while providing the reader with more specific instructions on how ac-
tually to do some of the calculations.

The aims of the second edition are also preserved in this third edi-
tion. The second edition grew from feedback from students who indi-
cated they appreciated the clarity and the focus on topics specifically
related to their work. However, some users missed coverage of several
important topics. Accordingly, sections were added to include a full
chapter on measures of quality of life and various psychological scales,
which are increasingly used in clinical studies; an expansion of the
chapter on probability, with the introduction of several nonparametric
methods; the clarification of some concepts that were more tersely ad-
dressed in the first edition; and the addition of several appendices (pro-
viding sample calculations of the Fisher's exact test, Kruskal–Wallis
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test, and various indices of reliability and responsiveness of scales used
in quality of life measures).

It requires a delicate balance to keep the book concise and basic,
and yet make it sufficiently inclusive to be useful to a wide audience. I
hope this book will be useful to diverse groups of people in the health
field, as well as to those in related areas. The material is intended for
(1) physicians doing clinical research as well as for those doing basic
research; (2) for students—medical, college, and graduate; (3) for r e-
search staff in various capacities; and (4) for anyone interested in the
logic and methodology of biostatistics and epidemiology. The principles
and methods described here are applicable to various substantive areas,
including medicine, public health, psychology, and education. Of
course, not all topics that are specifically relevant to each of these disci-
plines can be covered in this short text.

Bronx, New York Sylvia Wassertheil-Smoller
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Chapter 1
THE SCIENTIFIC METHOD

Science is built up with facts, as a house is with stones. But a collec-
tion of facts is no more a science than a heap of stones is a house.

Jules Henri Poincare
La Science et l'Hypothese (1908)

1.1 The Logic of Scientific Reasoning

The whole point of science is to uncover the “truth.” How do we go
about deciding something is true? We have two tools at our disposal to
pursue scientific inquiry:

We have our senses, through which we experience the world and make
observations.

We have the ability to reason, which enables us to make logical
inferences.

In science we impose logic on those observations.

Clearly, we need both tools. All the logic in the world is not going to
create an observation, and all the individual observations in the world
won't in themselves create a theory. There are two kinds of relation-
ships between the scientific mind and the world, two kinds of logic we
impose—deductive and inductive, as illustrated in Figure 1.1.

In deductive inference, we hold a theory and based on it we make a
prediction of its consequences. That is, we predict what the observa-
tions should be. For example, we may hold a theory of learning that
says that positive reinforcement results in better learning than does
punishment, that is, rewards work better than punishments. From this
theory we predict that math students who are praised for their right
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Figure 1.1

answers during the year will do better on the final exam than those
who are punished for their wrong answers. We go from the gen-
eral—the theory—to the specific—the observations. This is known as
the hypothetico-deductive method. 

In inductive inference, we go from the specific to the general. We
make many observations, discern a pattern, make a generalization, and
infer an explanation. For example, it was observed in the Vienna Gen-
eral Hospital in the 1840s that women giving birth were dying at a high
rate of puerperal fever, a generalization that provoked terror in pro-
spective mothers. It was a young doctor named Ignaz Phillip Semmel-
weis who connected the observation that medical students performing
vaginal examinations did so directly after coming from the dissecting
room, rarely washing their hands in between, with the observation that
a colleague who accidentally cut his finger while dissecting a corpse
died of a malady exactly like the one killing the mothers. He inferred
the explanation that the cause of death was the introduction of cadav-
erous material into a wound. The practical consequence of that creative
leap of the imagination was the elimination of puerperal fever as a
scourge of childbirth by requiring that physicians wash their hands
before doing a delivery! The ability to make such creative leaps from
generalizations is the product of creative scientific minds.

Epidemiologists have generally been thought to use inductive infer-
ence. For example, several decades ago it was noted that women
seemed to get heart attacks about 10 years later than men did. A crea-
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tive leap of the imagination led to the inference that it was women’s
hormones that protected them until menopause. EUREKA! They de-
duced that if estrogen was good for women, it must be good for men
and predicted that the observations would corroborate that deduction. A
clinical trial was undertaken which gave men at high risk of heart a t-
tack estrogen in rather large doses, 2.5 mg per day or about four times
the dosage currently used in post-menopausal women. Unsurprisingly,
the men did not appreciate the side effects, but surprisingly to the in-
vestigators, the men in the estrogen group had higher coronary heart
disease rates and mortality than those on placebo.2 What was good for
the goose might not be so good for the gander. The trial was discontin-
ued and estrogen as a preventive measure was abandoned for several
decades.

During that course of time, many prospective observational studies
indicated that estrogen replacement given to post-menopausal women
reduced the risk of heart disease by 30-50%. These observations led to
the inductive inference that post-menopausal hormone replacement is
protective, i.e. observations led to theory. However, that theory must be
tested in clinical trials. The first such trial of hormone replacement in
women who already had heart disease, the Heart and Estrogen/proges-
tin Replacement Study (HERS)  found no difference in heart disease
rates between the active treatment group and the placebo group, but did
find an early increase in heart disease events in the first year of the
study and a later benefit of hormones after about 2 years. Since this
was a study in women with established heart disease, it was a secon-
dary prevention trial and does not answer the question of whether wo-
men without known heart disease would benefit from long-term hor -
mone replacement. That question has been addressed by the Women’s
Health Initiative (WHI),  which is described in a later section.

The point of the example is to illustrate how observations (that
women get heart disease later than men) lead to theory (that hormones
are protective), which predicts new observations (that there will be fewer
heart attacks and deaths among those on hormones), which may
strengthen the theory, until it is tested in a clinical trial which can either
corroborate it or overthrow it and lead to a new theory, which then
must be further tested to see if it better predicts new observations. So
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there is a constant interplay between inductive inference (based on ob-
servations) and deductive inference (based on theory), until we get
closer and closer to the “truth.”

However, there is another point to this story. Theories don't just
leap out of facts. There must be some substrate out of which the theory
leaps. Perhaps that substrate is another preceding theory that was
found to be inadequate to explain these new observations and that the-
ory, in turn, had replaced some previous theory. In any case, one as-
pect of the “substrate” is the “prepared mind” of the investigator. If the
investigator is a cardiologist,  for instance, he or she is trained to look at
medical phenomena from a cardiology perspective and is knowledge-
able about preceding theories and their strengths and flaws. If the car-
diologist hadn't had such training, he or she might not have seen the
connection. Or, with different training, the investigator might leap to a
different inference altogether. The epidemiologist must work in an in-
ter-disciplinary team to bring to bear various perspectives on a problem
and to enlist minds “prepared” in different ways.

The question is,  how well does a theory hold up in the face of new
observations? When many studies provide affirmative evidence in favor
of a theory, does that increase our belief in it? Affirmative evidence
means more examples that are consistent with the theory. But to what
degree does supportive evidence strengthen an assertion? Those who
believe induction is the appropriate logic of science hold the view that
affirmative evidence is what strengthens a theory.

Another approach is that of Karl Popper, perhaps one of the fore-
most theoreticians of science. Popper claims that induction arising
from accumulation of affirmative evidence doesn't strengthen a theory.
Induction, after all, is based on our belief that the things unobserved
will be like those observed or that the future will be like the past. For
example, we see a lot of white swans and we make the assertion that all
swans are white.  This assertion is supported by many observations.
Each time we see another white swan we have more supportive evi-
dence. But we cannot prove that all swans are white no matter how
many white swans we see.

On the other hand, this assertion can be knocked down by the
sighting of a single black swan. Now we would have to change our as-
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sertion to say that most swans are white and that there are some black
swans. This assertion presumably is closer to the truth. In other
words, we can refute the assertion with one example, but we can't prove
it with many. (The assertion that all swans are white is a descriptive
generalization rather than a theory. A theory has a richer meaning
that incorporates causal explanations and underlying mechanisms.
Assertions, like those relating to the color of swans, may be compo-
nents of a theory.)

According to Popper, the proper methodology is to posit a theory,
or a conjecture, as he calls it, and try to demonstrate that it is false. The
more such attempts at destruction it survives, the stronger is the evi-
dence for it. The object is to devise ever more aggressive attempts to
knock down the assertion and see if it still survives. If it does not sur-
vive an attempt at falsification, then the theory is discarded and r e-
placed by another. He calls this the method of conjectures and refuta-
tions. The advance of science toward the “truth” comes about by
discarding theories whose predictions are not confirmed by observa-
tions, or theories that are not testable altogether, rather than by shor -
ing up theories with more examples of where they work. Useful scien-
tific theories are potentially falsifiable.

Untestable theories are those where a variety of contradictory ob-
servations could each be consistent with the theory. For example, con-
sider Freud's psychoanalytic theory. The Oedipus complex theory says
that a child is in love with the parent of the opposite sex. A boy desires
his mother and wants to destroy his father. If we observe a man to say
he loves his mother, that fits in with the theory. If we observe a man to
say he hates his mother, that also fits in with the theory, which would
say that it is “reaction formation” that leads him to deny his true feel-
ings. In other words, no matter what the man says, it could not falsify
the theory because it could be explained by it. Since no observation
could potentially falsify the Oedipus theory, its position as a scientific
theory could be questioned.

A third, and most reasonable, view is that the progress of science
requires both inductive and deductive inference. A particular point of
view provides a framework for observations, which lead to a theory that
predicts new observations that modify the theory, which then leads to
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new, predicted observations, and so on toward the elusive “truth,”
which we generally never reach. Asking which comes first, theory or
observation, is like asking which comes first, the chicken or the egg.

In general then, advances in knowledge in the health field come
about through constructing, testing, and modifying theories. Epidemio-
logists make inductive inferences to generalize from many observa-
tions, make creative leaps of the imagination to infer explanations and
construct theories, and use deductive inferences to test those theories.

Theories, then, can be used to predict observations. But these ob-
servations will not always be exactly as we predict them, due to error
and the inherent variability of natural phenomena. If the observations
are widely different from our predictions we will have to abandon or
modify the theory. How do we test the extent of the discordance of our
predictions based on theory from the reality of our observations? The
test is a statistical or probabilistic test. It is the test of the null hypothe-
sis, which is the cornerstone of statistical inference and will be dis-
cussed later. Some excellent articles on the logic and philosophy of sci-
ence, and applications in epidemiology, are listed in the references at
the end of this book.2-6

1.2 Variability of Phenomena Requires Statistical Analysis

Statistics is a methodology with broad areas of application in science
and industry, as well as in medicine and in many other fields. A phe-
nomenon may be principally based on a deterministic model. One ex-
ample is Boyle's law, which states that for a fixed volume an increase
in temperature of a gas determines that there is an increase in pres-
sure. Each time this law is tested the same result occurs. The only vari-
ability lies in the error of measurement. Many phenomena in physics
and chemistry are of such a nature.

Another type of model is a probabilistic model, which implies that
various states of a phenomenon occur with certain probabilities. For
instance, the distribution of intelligence is principally probabilistic, that
is, given values of intelligence occur with a certain probability in the
general population. In biology, psychology, or medicine, where phe-
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nomena are influenced by many factors that in themselves are variable
and by other factors that are unidentifiable, the models are often prob-
abilistic. In fact, as knowledge in physics has become more refined, it
begins to appear that models formerly thought to be deterministic are
probabilistic.

In any case, where the model is principally probabilistic, statistical
techniques are needed to increase scientific knowledge. The presence of
variation requires the use of statistical analysis.7 When there is little
variation with respect to a phenomenon, much more weight is given to
a small amount of evidence than when there is a great deal of varia-
tion. For example, we know that pancreatic cancer appears to be in-
variably a fatal disease. Thus, if we found a drug that indisputably
cured a few patients of pancreatic cancer, we would give a lot of weight
to the evidence that the drug represented a cure, far more weight than
if the course of this disease were more variable. In contrast to this ex-
ample, if we were trying to determine whether vitamin C cures colds, we
would need to demonstrate its effect in many patients and we would
need to use statistical methods to do so, since human beings are quite
variable with respect to colds. In fact, in most biological and even more
so in social and psychological phenomena, there is a great deal of
variability.

1.3 Inductive Inference: Statistics as the Technology of the
Scientific Method

Statistical methods are objective methods by which group trends are
abstracted from observations on many separate individuals. A simple
concept of statistics is the calculation of averages, percentages,  and so
on and the presentation of data in tables and charts. Such techniques
for summarizing data are very important indeed and essential to de-
scribing the population under study. However, they make up a small
part of the field of statistics. A major part of statistics involves the
drawing of inferences from samples to a population in regard to some
characteristic of interest. Suppose we are interested in the average
blood pressure of women college students. If we could measure the
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blood pressure of every single member of this population, we would not
have to infer anything. We would simply average all the numbers we
obtained. In practice, however, we take a sample of students (properly
selected), and on the basis of the data we obtain from the sample, we
infer what the mean of the whole population is likely to be.

The reliability of such inferences or conclusions may be evaluated
in terms of probability statements. In statistical reasoning, then, we
make inductive inferences, from the particular (sample) to the general
(population). Thus, statistics may be said to be the technology of the
scientific method.

1.4 Design of Studies

While the generation of hypotheses may come from anecdotal
observations, the testing of those hypotheses must be done by making
controlled observations, free of systematic bias. Statistical techniques, to
be valid, must be applied to data obtained from well-designed studies.
Otherwise, solid knowledge is not advanced.

There are two types of studies: (1) Observational studies, where
“Nature” determines who is exposed to the factor of interest and who is
not exposed. These studies demonstrate association. Association may
imply causation or it may not. (2) Experimental studies, where the in-
vestigator determines who is exposed. These may prove causation.

Observational studies may be of three different study designs:
cross-sectional, case-control,  or prospective . In a cross-sectional study
the measurements are taken at one point in time. For example, in a
cross-sectional study of high blood pressure and coronary heart dis-
ease the investigators determine the blood pressure and the presence of
heart disease at the same time. If they find an association, they would
not be able to tell which came first. Does heart disease result in high
blood pressure or does high blood pressure cause heart disease, or are
both high blood pressure and heart disease the result of some other
common cause?
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In a case-control study  of smoking and lung cancer, for example,
the investigator starts with lung cancer cases and with controls, and
through examination of the records or through interviews determines
the presence or the absence of the factor in which he or she is interest-
ed (smoking). A case-control study is sometimes referred to as a retro-
spective study  because data on the factor of interest are collected retro-
spectively, and thus may be subject to various inaccuracies.

In a prospective (or cohort) study the investigator starts with a co-
hort of nondiseased persons with that factor (i.e., those who smoke)
and persons without that factor (nonsmokers), and goes forward into
some future time to determine the frequency of development of the dis-
ease in the two groups. A prospective study is also known as a longitu-
dinal study. The distinction between case-control studies and prospec-
tive studies lies in the sampling. In the case-control study we sample
from among the diseased and nondiseased, whereas in a prospective
study we sample from among those with the factor and those without
the factor . Prospective studies provide stronger evidence of causality
than retrospective studies but are often more difficult, more costly, and
sometimes impossible to conduct, for example if the disease under
study takes decades to develop or if it is very rare.

In the health field, an experimental study to test an intervention of
some sort is called a clinical trial. In a clinical trial the investigator
assigns patients or participants to one group or another, usually
randomly, while trying to keep all other factors constant or controlled
for, and compares the outcome of interest in the two (or more) groups.
More about clinical trials is in Chapter 6.

In summary, then, the following list is in ascending order of
strength in terms of demonstrating causality:

♦ cross-sectional studies: useful in showing associations, in providing
early clues to etiology.

♦ case-control studies: useful for rare diseases or conditions, or when
the disease takes a very long time to become manifest (synonymous
name: retrospective studies).
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♦ cohort studies: useful for providing stronger evidence of causality,
and less subject to biases due to errors of recall or measurement
(synonymous names: prospective studies, longitudinal studies).

♦ clinical trials: prospective, experimental studies that provide the
most rigorous evidence of causality.

1.5 How to Quantify Variables

How do we test a hypothesis? First of all, we must set up the hypothesis
in a quantitative manner. Our criterion measure must be a number of
some sort.  For example, how many patients died in a drug group com-
pared with how many of the patients died who did not receive the drug,
or what is the mean blood pressure of patients on a certain antihyper -
tensive drug compared with the mean blood pressure of patients not on
this drug. Sometimes variables are difficult to quantify. For instance, if
you are evaluating the quality of care in a clinic in one hospital com-
pared with the clinic of another hospital, it may sometimes be difficult
to find a quantitative measure that is representative of quality of care,
but nevertheless it can be done and it must be done if one is to test the
hypothesis.

There are two types of data that we can deal with: discrete  or cate-
gorical variables and continuous variables. Continuous variables,
theoretically,  can assume an infinite number of values between any two
fixed points. For example, weight is a continuous variable, as is blood
pressure, time, intelligence, and in general , variables in which meas-
urements can be taken. Discrete variables (or categorical variables) are
variables that can only assume certain fixed numerical values. For in-
stance, sex is a discrete variable. You may code it as 1 = male, 2 = fe-
male, but an individual cannot have a code of 1.5 on sex (at least not
theoretically). Discrete variables generally refer to counting, such as the
number of patients in a given group who live, the number of people
with a certain disease, and so on. In Chapter 3 we will consider a tech-
nique for testing a hypothesis where the variable is a discrete one, and
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subsequently, we will discuss some aspects of continuous variables, but
first we will discuss the general concepts of hypothesis testing.

1.6 The Null Hypothesis

The hypothesis we test statistically is called the null hypothesis. Let us
take a conceptually simple example. Suppose we are testing the efficacy
of a new drug on patients with myocardial infarction (heart attack). We
divide the patients into two groups—drug and no drug—according to
good design procedures, and use as our criterion measure mortality in
the two groups. It is our hope that the drug lowers mortality, but to test
the hypothesis statistically, we have to set   it up in a sort of backward
way. We say our hypothesis is that the drug makes no difference, and
what we hope to do is to reject the “no difference” hypothesis, based on
evidence from our sample of patients. This is known as the null
hypothesis . We specify our test hypothesis as follows:

HO  (null hypothesis): death rate in group treated with drug A =
death rate in group treated with drug B.

This is equivalent to:

HO : (death rate in group A) – (death rate in group B) = 0.

We test this against an alternate hypothesis, known as HA , that the
difference in death rates between the two groups does not  equal 0.

We then gather data and note the observed difference in mortality
between group A and group B. If this observed difference is sufficiently
greater than zero, we reject the null hypothesis. If we reject the null
hypothesis of no difference, we accept the alternate hypothesis , which is
that the drug does make a difference.

When you test a hypothesis, this is the type of reasoning you use:

(1) I will assume the hypothesis that there is no difference is true;
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(2) I will then collect the data and observe the difference between
the two groups;

(3) If the null hypothesis is true, how likely is it that by chance
alone I would get results such as these?

(4) If it is not likely that these results could arise by chance under
the assumption than the null hypothesis is true, then I will
conclude it is false, and I will “accept” the alternate hypothesis.

1.7 Why Do We Test the Null Hypothesis?

Suppose we believe that drug A is better than drug B in preventing
death from a heart attack. Why don't we test that belief directly and see
which drug is better, rather than testing the hypothesis that drug A is
equal  to drug B? The reason is that there is an infinite number of ways
in which drug A can be better than drug B, so we would have to test an
infinite number of hypotheses. If drug A causes 10% fewer deaths
than drug B, it is better. So first we would have to see if drug A causes
10% fewer deaths. If it doesn't cause 10% fewer deaths, but if it causes
9% fewer deaths,  it is also better. Then we would have to test whether
our observations are consistent with a 9% difference in mortality
between the two drugs. Then we would have to test whether there is an
8% difference, and so on. Note: each such hypothesis would be set up
as a null hypothesis in the following form: Drug A – Drug B mortality
= 10%, or equivalently,

(Drug A – Drug B mortality) – (10%) = 0;
(Drug A – Drug B mortality) – ( 9%) = 0;
(Drug A – Drug B mortality) – ( 8%) = 0; etc.

On the other hand, when we test the null hypothesis of no differ-
ence, we only have to test one value—a 0% difference—and we ask
whether our observations are consistent with the hypothesis that there
is no  difference in mortality between the two drugs. If the observations
are consistent with a null difference, then we cannot state that one drug
is better than the other. If it is unlikely that they are consistent with a
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null difference, then we can reject that hypothesis and conclude there is
a difference.

A common source of confusion arises when the investigator really
wishes to show that one treatment is as good as another (in contrast to
the above example, where the investigator in her heart of hearts really
believes that one drug is better). For example, in the emergency room a
quicker procedure may have been devised and the investigator believes
it may be as good as the standard procedure, which takes a long time.
The temptation in such a situation is to “prove the null hypothesis.”
But it is impossible to “prove” the null hypothesis.

All statistical tests can do is reject the null hypothesis or fail to reject
it. We do not prove the hypothesis by gathering affirmative or support-
ive evidence, because no matter how many times we did the experiment
and found a difference close to zero, we could never be assured that the
next time we did such an experiment we would not find a huge differ-
ence that was nowhere near zero. It is like the example of the white
swans discussed earlier: no matter how many white swans we see, we
cannot prove that all swans are white, because the next sighting might
be a black swan. Rather, we try to falsify or reject our assertion of no
difference, and if the assertion of zero difference withstands our a t-
tempt at refutation, it survives as a hypothesis in which we continue to
have belief. Failure to reject it does not mean we have proven that there
is really no difference. It simply means that the evidence we have “is
consistent with” the null hypothesis. The results we obtained could
have arisen by chance alone if the null hypothesis were true. (Perhaps
the design of our study was not appropriate. Perhaps we did not have
enough patients.)

So what can one do if one really wants to show that two treatments
are equivalent? One can design a study that is large enough to detect a
small difference if there really is one. If the study has the power
(meaning a high likelihood) to detect a difference that is very, very, very
small, and one fails to detect it, then one can say with a high degree of
confidence that one can't find a meaningful difference between the two
treatments. It is impossible to have a study with sufficient power to de-
tect a 0% difference. As the difference one wishes to detect approaches
zero, the number of subjects necessary for a given power approaches
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infinity. The relationships among significance level, power, and sample
size are discussed more fully in Chapter 6.

1.8 Types of Errors

The important point is that we can never be certain that we are right in
either accepting or rejecting a hypothesis. In fact, we run the risk of
making one of two kinds of errors: We can reject the null or test hy-
pothesis incorrectly, that is, we can conclude that the drug does reduce
mortality when in fact it has no effect. This is known as a type I error .
Or we can fail to reject the null or test hypothesis incorrectly, that is, we
can conclude that the drug does not have an effect when in fact it does
reduce mortality. This is known as a type II error.  Each of these errors
carries with it certain consequences. In some cases a type I error may
be more serious; in other cases a type II error may be more serious.
These points are illustrated in Figure 1.2.

Null Hypothesis (HO): Drug has no effect—no difference in mortality
between patients using drug and patients not using drug.

Alternate Hypothesis (HA): Drug has effect—reduces mortality.

TRUE STATE OF NATURE
DRUG HAS NO

EFFECT
HO True

DRUG HAS
EFFECT;
HO  False,
HA True

DO NOT
REJECT HO

No Effect NO

NO
ERROR

TYPE II
ERRORDECISION

ON BASIS
OF SAMPLE REJECT HO

(Accept HA  )
Effect

TYPE I
ERROR

NO
ERROR

Figure 1.2
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If we don't reject HO , we conclude there is no relationship between
drug and mortality. If we do reject HO  and accept HA , we conclude there
is a rela tionship between drug and mortality.

Actions to be Taken Based on Decision:
(1) If we believe the null hypothesis (i.e., fail to reject it), we will not use

the drug.
Consequences of wrong decision: Type II error. If we believe HO

incorrectly, since in reality the drug is beneficial, by withholding it
we will allow patients to die who might otherwise have lived.

(2) If we reject null hypothesis in favor of the alternate hypothesis, we
will use the drug.
Consequences of wrong decision: Type I error. If we have rejected
the null hypothesis incorrectly, we will use the drug and patients
don't benefit. Presuming the drug is not harmful in itself, we do
not directly hurt the patients, but since we think we have found the
cure, we might no longer test other drugs.

We can never absolutely know the “True State of Nature,” but we
infer it on the basis of sample evidence .

1.9 Significance Level and Types of Error

We cannot eliminate the risk of making one of these kinds of errors,
but we can lower the probabilities that we will make these errors. The
probability of making a type I error is known as the significance level
of a statistical test. When you read in the literature that a result was
significant at the .05 level it means that in this experiment the results
are such that the probability of making a type I error is less than or
equal to .05. Mostly in experiments and surveys people are very con-
cerned about having a low probability of making a type I error and of-
ten ignore the type II error. This may be a mistake since in some cases
a type II error is a more serious one than a type I error. In designing a
study, if you aim to lower the type I error you automatically raise the
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type II error probability. To lower the probabilities of both the type I
and type II error in a study, it is necessary to increase the number of
observations.

It is interesting to note that the rules of the Food and Drug Ad-
ministration (FDA) are set up to lower the probability of making type I
errors. In order for a drug to be approved for marketing, the drug
company must be able to demonstrate that it does no harm and that it
is effective. Thus, many drugs are rejected because their effectiveness
cannot be adequately demonstrated. The null hypothesis under test is,
“This drug makes no difference.” To satisfy FDA rules this hypothesis
must be rejected, with the probability of making a type I error (i.e., r e-
jecting it incorrectly) being quite low. In other words, the FDA doesn't
want a lot of useless drugs on the market. Drug companies, however,
also give weight to guarding against type II error (i.e., avoid believing
the no-difference hypothesis incorrectly) so that they may market po-
tentially beneficial drugs.

1.10 Consequences of Type I and Type II Errors

The relative seriousness of these errors depends on the situation. Re-
member, a type I error (also known as alpha) means you are stating
something is really there (an effect) when it actually is not, and a type
II error (also known as beta error) mean you are missing something
that is really there. If you are looking for a cure for cancer, a type I I
error would be quite serious. You would miss finding useful treat-
ments. If you are considering an expensive drug to treat a cold, clearly
you would want to avoid a type I error, that is, you would not want to
make false claims for a cold remedy.

It is difficult to remember the distinction between type I and II er -
rors. Perhaps this small parable will help us. Once there was a King
who was very jealous of his Queen. He had two knights, Alpha, who
was very handsome, and Beta, who was very ugly. It happened that the
Queen was in love with Beta. The King, however, suspected the Queen
was having an affair with Alpha and had him beheaded. Thus, the
King made both kinds of errors: he suspected a relationship (with
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Alpha) where there was none, and he failed to detect a relationship
(with Beta) where there really was one. The Queen fled the kingdom
with Beta and lived happily ever after, while the King suffered torments
of guilt about his mistaken and fatal rejection of Alpha.

More on alpha, beta, power, and sample size appears in Chapter 6.
Since hypothesis testing is based on probabilities, we will first present
some basic concepts of probability in Chapter 2.
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Chapter 2
A LITTLE BIT OF PROBABILITY

The theory of probability is at bottom nothing but common sense re-
duced to calculus.

Pierre Simon De Le Place
Theori Analytique des Probabilites (1812–1820)

2.1 What Is Probability?

The probability of the occurrence of an event is indicated by a number
ranging from 0 to 1. An event whose probability of occurrence is 0 is
certain not to occur, whereas an event whose probability is 1 is certain
to occur.

The classical definition of probability is as follows: if an event can
occur in N mutually exclusive, equally likely ways and if nA  of these
outcomes have attribute A, then the probability of A, written as P(A),
equals nA /N. This is an a priori definition of probability, that is, one
determines the probability of an event before it has happened. Assume
one were to toss a die and wanted to know the probability of obtaining a
number divisible by three on the toss of a die. There are six possible
ways that the die can land. Of these, there are two ways in which the
number on the face of the die is divisible by three, a 3 and a 6. Thus,
the probability of obtaining a number divisible by three on the toss of a
die is 2/6 or 1/3.

In many cases, however, we are not able to enumerate all the pos-
sible ways in which an event can occur, and, therefore, we use the rela-
tive frequency definition of probability. This is defined as the number
of times that the event of interest has occurred divided by the total
number of trials (or opportunities for the event to occur). Since it is
based on previous data, it is called the a posteriori definition of prob-
ability.

For instance, if you select at random a white American female, the
probability of her dying of heart disease is .00287. This is based on the
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finding that per 100,000 white American females, 287 died of coronary
heart disease (estimates are for 2001, National Center for Health Sta-
tistics7). When you consider the probability of a white American female
who is between ages 45 and 64, the figure drops to .00088 (or 88
women in that age group out of 100,000), and when you consider
women 65 years and older, the figure rises to .01672 (or 1672 per
100,000). For white men 65 or older it is .0919 (or 9190 per 100,000).
The two important points are (1) to determine a probability, you must
specify the population to which you refer, for example, all white fe-
males, white males between 65 and 74, nonwhite females between 65
and 74, and so on; and (2) the probability figures are constantly revised
as new data become available.

This brings us to the notion of expected frequency . If the probabili-
ty of an event is P and there are N trials (or opportunities for the event
to occur), then we can expect that the event will  occur N × P times. It is
necessary to remember that probability “works” for large numbers.
When in tossing a coin we say the probability of it landing on heads is
.50, we mean that in many tosses half the time the coin will land heads.
If we toss the coin ten times, we may get three heads (30%) or six heads
(60%), which are a considerable departure from the 50% we expect.
But if we toss the coin 200,000 times, we are very likely to be close to
getting exactly 100,000 heads or 50%.

Expected frequency is really the way in which probability “works.”
It is difficult to conceptualize applying probability to an individual. For
example, when TV announcers proclaim there will be say, 400 fatal
accidents in State X on the Fourth of July, it is impossible to say
whether any individual person will in fact have such an accident, but
we can be pretty certain that the number of such accidents will be very
close to the predicted 400 (based on probabilities derived from previous
Fourth of July statistics).

2.2 Combining Probabilities

There are two laws for combining probabilities that are important.
First, if there are mutually exclusive events  (i.e., if one occurs, the other
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cannot), the probability of either one or the other occurring is the sum
of their individual probabilities. Symbolically,

P A or B P A P B( ) ( ) ( )= +

An example of this is as follows: the probability of getting either a 3
or a 4 on the toss of a die is 1/6 + 1/6 = 2/6.

A useful thing to know is that the sum of the individual probabili-
ties of all possible mutually exclusive events must equal 1. For example,
if A is the event of winning a lottery, and not A (written as A), is the
event of not winning the lottery, then P(A) + P ( A) = 1.0 and P( A) = 1
– P(A).

Second, if there are two independent events (i.e., the occurrence of
one is not related to the occurrence of the other), the joint probability of
their occurring together (jointly) is the product  of the individual prob-
abilities. Symbolically,

P A and B P A P B( ) ( ) ( )= ×

An example of this is the probability that on the toss of a die you
will get a number that is both even and divisible by 3. This probability is
equal to 1/2 × 1/3 = 1/6. (The only number both even and divisible by 3
is the number 6.)

The joint probability law is used to test whether events are indepen-
dent. If they are independent, the product of their individual probabili-
ties should equal the joint probability. If it does not, they are not inde-
pendent. It is the basis of the chi-square test of significance, which we
will consider in the next section.

Let us apply these concepts to a medical example. The mortality
rate for those with a heart  attack in a special coronary care unit in a
certain hospital is 15%. Thus, the probability that a patient with a heart
attack admitted to this coronary care unit will die is .15 and that he will
survive is .85. If two men are admitted to the coronary care unit on a
particular day, let A be the event that the first man dies and let B be the
event that the second man dies.
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The probability that both will die is

P A and B P A P B( ) ( ) ( ) . . .= × = × =15 15 0225

We assume these events are independent of each other so we can
multiply their probabilities. Note, however, that the probability that ei-
ther one or the other will die from the heart attack is not  the sum of
their probabilities because these two events are not mutually exclusive.
It is possible that both will die (i.e., both A and B can occur).

To make this clearer, a good way to approach probability is
through the use of Venn diagrams, as shown in Figure 2.1. Venn dia-
grams consist of squares that represent the universe of possibilities and
circles that define the events of interest.

In diagrams 1, 2, and 3, the space inside the square represents all
N possible outcomes. The circle marked A represents all the outcomes
that constitute event A; the circle marked B represents all the outcomes
that constitute event B. Diagram 1 illustrates two mutually exclusive
events; an outcome in circle A cannot also be in circle B. Diagram 2
illustrates two events that can occur jointly: an outcome in circle A can
also be an outcome belonging to circle B. The shaded area marked AB
represents outcomes that are the occurrence of both A and B. The dia-
gram 3 represents two events where one (B) is a subset of the other
(A); an outcome in circle B must also be an outcome constituting event
A, but the reverse is not necessarily true.

BA B

A

AB

N N N

A B

Figure 2.1

It can be seen from diagram 2 that if we want the probability of an
outcome being either A or B and if we add the outcomes in circle A to
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the outcomes in circle B, we have added in the outcomes in the shaded
area twice. Therefore, we must subtract the outcomes in the shaded
area (A and B) also written as (AB) once to arrive at the correct an-
swer. Thus, we get the result

P A or B P A P B P AB( ) ( ) ( ) ( )= + −

2.3 Conditional Probability

Now let us consider the case where the chance that a particular event
happens is dependent on the outcome of another event. The probability
of A, given that B has occurred, is called the conditional probability of
A given B, and is written symbolically as P(A|B). An illustration of this
is provided by Venn diagram 2. When we speak of conditional prob-
ability, the denominator becomes all the outcomes in circle B (instead
of all N possible outcomes) and the numerator consists of those out-
comes that are in that part of A which also contains outcomes belong-
ing to B. This is the shaded area in the diagram labeled AB. If we r e-
turn to our original definition of probability, we see that

P A B
n

n
AB

B

( | ) =

(the number of outcomes in both A and B, divided by the total number
of outcomes in B).

If we divide both numerator and denominator by N, the total num-
ber of all possible outcomes, we obtain

P A B
n N

n N

P A and B

P B
AB

B

( | )
( )

( )
= =

Multiplying both sides by P(B) gives the complete multiplicative law:

P A and B P A B P B( ) ( | ) ( )= ×
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Of course, if A and B are independent, then the probability of A given
B is just equal to the probability of A (since the occurrence of B does
not influence the occurrence of A) and we then see that

P A and B P A P B( ) ( ) ( )= ×

2.4 Bayesian Probability

Imagine that M is the event “loss of memory,” and B is the event
“brain tumor.”  We can establish from research on brain tumor pa-
tients the probability of memory loss given a brain tumor, P(M|B).  A
clinician, however, is more interested in the probability of a brain tu-
mor, given that a patient has memory loss, P(B⎮M).

It is difficult to obtain that probability directly because one would
have to study the vast number of persons with memory loss (which in
most cases comes from other causes) and determine what proportion
of them have brain tumors.

Bayes' equation (or Bayes' theorem) estimates P(B⎮M) as follows:

P brain tumor given memory loss
P memory loss given brain tumor P brain tumor

P memory loss
( , )

( , ) ( )

( )
=

×

In the denominator, the event of “memory loss” can occur either
among people with brain tumor, with probability = P(M⎮B) P(B), or
among people with no brain tumor, with probability = P(M⎮ B )P( B ).
Thus,

P B M
P M B P B

P M B P B P M B P B
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+

The overall probability of a brain tumor, P(B) is the “a priori
probability,” which is a sort of “best guess” of the prevalence of brain
tumors.
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2.5 Odds and Probability

When the odds of a particular horse losing  a race are said to be 4 to 1,
he has a 4/5 = .80 probability of losing. To convert an odds statement to
probability, we add 4 + 1 to get our denominator of 5. The odds of the
horse winning  are 1 to 4, which means he has a probability of winning
of 1/5 = .20.

The odds in favor of A
P A

P not A

P A

P A
= =

−
( )

( )

( )

( )1

P A
odds

odds
( ) =

+1

The odds of drawing an ace = 4 (aces in a deck) to 48 (cards that
are not aces) = 1 to 12; therefore, P(ace) = 1/13. The odds against
drawing an ace = 12 to 1; P(Not Ace) = 12/13.

In medicine, odds are often used to calculate an odds ratio.  An
odds ratio is simply the ratio of two odds. For example, say that in a
particular study comparing lung cancer patients with controls, it was
found that the odds of being a lung cancer case for people who smoke
were 5 to 4 (5/4) and the odds of having lung cancer for nonsmokers
was 1 to 8 (1/8), then the odds ratio would be

5 4
1 8

5 8

4 1
40
4

10
/

/
=

×
×

= =

An odds ratio of 10 means that the odds of being a lung cancer
case is 10 times greater for smokers than for nonsmokers.

Note, however, that we cannot determine from such an analysis
what the probability of getting lung cancer is for smokers, because in
order to do that we would have to know how many people out of all
smokers developed lung cancer, and we haven't studied all smokers; all
we do know is how many out of all our lung cancer cases were smok-
ers. Nor can we get the probability of lung cancer among nonsmokers,
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because we would have to a look at a population of nonsmokers and
see how many of them developed lung cancer. All we do know is that
smokers have 10-fold greater odds of having lung cancer than non-
smokers.

More on this topic is presented in Section 4.12.

2.6 Likelihood Ratio

A related concept is the likelihood ratio (LR), which tells us how likely it
is that a certain result would arise from one set of circumstances in
relation to how likely the result would arise from an opposite set of cir-
cumstances.

For example, if a patient has a sudden loss of memory, we might
want to know the likelihood ratio of that symptom for a brain tumor,
say. What we want to know is the likelihood that the memory loss arose
out of the brain tumor in relation to the likelihood that it arose from
some other condition. The likelihood ratio is a ratio of conditional
probabilities.

LR
P memory loss given brain tumor

P memory loss given no brain tumor

P M given B

P M given not B

=

=

( , )

( , )

( )

( )

Of course to calculate this LR we would need to have estimates of
the probabilities involved in the equation, that is, we would need to
know the following: among persons who have brain tumors, what
proportion have memory loss, and among persons who don't have
brain tumors, what proportion have memory loss. It may sometimes be
quite difficult to establish the denominator of the likelihood ratio be-
cause we would need to know the prevalence of memory loss in the
general population.

The LR is perhaps more practical to use than the Bayes' theorem,
which gives the probability of a particular disease given a particular
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symptom. In any case, it is widely used in variety of situations because
it addresses this important question: If a patient presents with a symp-
tom, what is the likelihood that the symptom is due to a particular dis-
ease rather than to some other reason than this disease?

2.7 Summary of Probability

Additive Law:

P A or B P A P B P A and B( ) ( ) ( ) ( )= + −

If events are mutually exclusive: P A or B P A P B( ) ( ) ( ).= +

Multiplicative Law:

P A and B P A B P B( ) ( | ) ( )= ×

If events are independent:  P A and B P A P B( ) ( ) ( ).= ×

Conditional Probability:

P A B
P A and B

P B
( | )

( )

( )
=

Bayes’ Theorem:

P B A
P A B P B

P A B P B P A B P B
( | )

( | ) ( )

( | ) ( ) ( | ) ( )
=

+

Odds of A:

P A

P A

( )

( )1 −
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Likelihood Ratio:

P A B

P A B

( | )

( | )
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Chapter 3
MOSTLY ABOUT STATISTICS

A statistician is someone who, with his head in an oven and his feet in
a bucket of ice water, when asked how he feels, responds: “On the
average, I feel fine.”

Anonymous

Different statistical techniques are appropriate depending on whether
the variables of interest are discrete or continuous. We will first con-
sider the case of discrete variables and present the chi-square test and
then we will discuss methods applicable to continuous variables.

3.1 Chi-Square for 2 × 2 Tables

The chi-square test is a statistical method to determine whether the r e-
sults of an experiment may arise by chance or not. Let us, therefore,
consider the example of testing an anticoagulant drug on female pa-
tients with myocardial infarction. We hope the drug lowers mortality,
but we set up our null hypothesis as follows:

♦ Null There is no difference in mortality
Hypothesis between the treated group of

patients and the control group.

♦ Alternate The mortality in the treated group is
Hypothesis: lower than in the control group.

(The data for our example come from a study done a long time ago
and refer to a specific high-risk group.8 They are used for illustrative
purposes and they do not reflect current mortality rates for people with
myocardial infarction.)

We then record our data in a 2 × 2 contingency table in which each
patient is classified as belonging to one of the four cells:
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Observed Frequencies

Control Treated

Lived 89 223 312

Died 40 39 79

Total 129 262 391

The mortality in the control group is 40/129 = 31% and in the
treated it is 39/262 = 15%. But could this difference have arisen by
chance?  We use the chi-square test to answer this question. What we
are really asking is whether the two categories of classification (control
vs. treated by lived vs. died) are independent of each other. If they are
independent, what frequencies would we expect in each of the cells?
And how different are our observed frequencies from the expected
ones?  How do we measure the size of the difference?

To determine the expected frequencies, consider the following:

Control Treated

Lived a b (a + b)    

Died c d (c + d)    

Total (a + c) (b + d) N    

If the categories are independent, then the probability of a patient
being both a control and living is P(control) × P(lived). [Here we apply
the law referred to in Chapter 2 on the joint probability of two inde-
pendent events.]

The expected frequency of an event is equal to the probability of the
event times the number of trials = N × P. So the expected number of
patients who are both controls and live is
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N  P(control and lived) =  N  P(control)  P(lived)× × ×

=  N 
(a +  c)

N

(a +  b)

N
 =  (a +  c)  

(a +  b)

N
×

⎡

⎣⎢
⎤

⎦⎥
×

In our case this yields the following table:

Control Treated

Lived 129    
312

391
 =  103× 262    

312

391
 =  209× 312

Died 129    
79

391
 =  26× 262    

79

391
 =  53× 79

Total 129 262 391 

Another way of looking at this is to say that since 80% of the pa-
tients in the total study lived (i.e., 312/391 = 80%), we would expect that
80% of the control patients and 80% of the treated patients would live.
These expectations differ, as we see, from the observed frequencies
noted earlier, that is, those patients treated did, in fact, have a lower
mortality than those in the control group.

Well, now that we have a table of observed frequencies and a table
of expected values, how do we know just how different they are? Do
they differ just by chance or is there some other factor that causes
them to differ? To determine this, we calculate a value called
chi-square (also written as χ2). This is obtained by taking the observed
value in each cell, subtracting from it the expected value in each cell,
squaring this difference, and dividing by the expected value for each
cell. When this is done for each cell, the four resulting quantities are
added together to give a number called chi-square. Symbolically this
formula is as follows:
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(O e )

e
 +  

(O e )

e
 +  

(O e )

e
 +  

(O e )

e
a a

a

b b

b

c c

c

d d

d

– – – –2 2 2 2

where O is the observed frequency and e is the expected frequency in
each cell.

This number, called chi-square, is a statistic that has a known dis-
tribution. What that means, in essence, is that for an infinite number
of such 2 × 2 tables, chi-squares have been calculated and we thus
know what the probability is of getting certain values of chi-square.
Thus, when we calculate a chi-square for a particular 2 × 2 contin-
gency table, we know how likely it is that we could have obtained a value
as large as the one that we actually obtained strictly by chance, under
the assumption the hypothesis of independence is the correct one, that
is, if the two categories of classification were unrelated to one another
or if the null hypothesis were true. The particular value of chi-square
that we get for our example happens to be 13.94.

From our knowledge of the distribution of values of chi-square, we
know that if our null hypothesis is true, that is, if there is no difference
in mortality between the control and treated group, then the probability
that we get a value of chi-square as large or larger than 13.94 by
chance alone is very, very low; in fact this probability is less than .005.
Since it is not likely that we would get such a large value of chi-square
by chance under the assumption of our null hypothesis, it must be that
it has arisen not by chance but because our null hypothesis is incor-
rect. We, therefore, reject the null hypothesis at the .005 level of signifi-
cance and accept the alternate hypothesis, that is, we conclude that
among women with myocardial infarction the new drug does reduce
mortality. The probability of obtaining these results by chance alone is
less than 5/1000 (.005). Therefore, the probability of rejecting the null
hypothesis, when it is in fact true (type I error) is less than .005.

The probabilities for obtaining various values of chi-square are ta-
bled in most standard statistics texts, so that the procedure is to calcu-
late the value of chi-square and then look it up in the table to determine
whether or not it is significant. That value of chi-square that must be
obtained from the data in order to be significant is called the critical
value.  The critical value of chi-square at the .05 level of significance for
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a 2 × 2 table is 3.84. This means that when we get a value of 3.84 or
greater from a 2 × 2 table, we can say there is a significant difference
between the two groups. Appendix A provides some critical values for
chi-square and for other tests.

In actual usage, a correction is applied for 2 × 2 tables known as
the Yates' correction and calculation is done using the formula:

N   |  ad  bc |   
N

2

a +  b c +  d a +  c b +  d

2

( ) ( ) ( ) ( )

– –
⎡

⎣⎢
⎤

⎦⎥

Note: | ad – bc | means the absolute value of the difference between a ×
d and b × c. In other words, if a × d is greater than b × c, subtract bc
from ad; if bc is greater than ad, subtract ad from bc. The corrected
chi-square so calculated is 12.95, still well above the 3.84 required for
significance.

The chi-square test should not be used if the numbers in the cells
are too small. The rules of thumb: When the total N is greater than 40,
use the chi-square test with Yates' correction. When N is between 20
and 40 and the expected frequency in each of the four cells is 5 or
more, use the corrected chi-square test. If the smallest expected fre-
quency is less than 5, or if N is less than 20, use the Fisher's test.

While the chi-square test approximates the probability, the Fisher's
Exact Test gives the exact probability of getting a table with values like
those obtained or even more extreme. A sample calculation is shown in
Appendix B. The calculations are unwieldy but the Fisher's exact test is
also usually included in most statistics programs for personal comput-
ers. More on this topic may be found in the book Statistical Methods
for Rates and Proportions by Joseph L. Fleiss. The important thing is
to know when the chi-square test is or is not appropriate.



34 Biostatistics and Epidemiology: A Primer for Health Professionals

3.2 McNemar Test

Suppose we have the situation where measurements are made on the
same group of people before and after some intervention, or suppose
we are interested in the agreement between two judges who evaluate the
same group of patients on some characteristics. In such situations, the
before and after measures, or the opinions of two judges, are not inde-
pendent of each other, since they pertain to the same individuals.
Therefore, the Chi-Square test or the Fisher's Exact Test are not ap-
propriate. Instead, we can use the McNemar test.

Consider the following example. Case histories of patients who
were suspected of having ischemic heart disease (a decreased blood
flow to the heart because of clogging of the arteries), were presented to
two cardiology experts. The doctors were asked to render an opinion on
the basis of the available information about the patient. They could
recommend either (1) that the patient should be on medical therapy or
(2) that the patient have an angiogram, which is an invasive test, to de-
termine if the patient is a suitable candidate for coronary artery bypass
graft surgery (known as CABG). Table 3.1 shows the results of these
judgments on 661 patients.

TABLE 3.1

E X P E R T 1

Medical Surgical

Medical a = 397 b = 97 a + b  = 494E
X
P
E
R
T

2 Surgical c = 91 d = 76 c + d = 167

a + c = 488 b + d = 173 N = 661
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Note that in cell b Expert 1 advised surgery and Expert 2 advised medi-
cal therapy for 97 patients, whereas in cell c Expert 1 advised medical
therapy and Expert 2 advised surgery for 91 of the patients. Thus, the
two physicians disagree in 188 of the 661 cases or 28% of the time.
Cells a and d represent patients about whom the two doctors agree.
They agree in 473 out the 661 case or 72% of the time.

To determine whether the observed disagreement could have arisen
by chance alone under the null hypothesis of no real disagreement in
recommendations between the two experts, we calculate a type of chi-
square value as follows:

2
2

1 25

188
13χ  (chi - square) =  (| b  c |   ) 

b c
 =   =  – – .

( )+

(⎮b  – c⎮ means the absolute value of the difference between the two
cells, that is, irrespective of the sign; the –1 in the numerator is analo-
gous to the Yates' correction for chi-square described in Section 3.1,
and gives a better approximation to the chi-square distribution.) A chi-
square of .13 does not reach the critical value of chi-square of 3.84
needed for a .05 significance level, as described in Section 3.1, so we
cannot reject the null hypothesis and we conclude that our data are
consistent with no difference in the opinions of the two experts. Were
the chi-square test significant, we would have to reject the null hypothe-
sis and say the experts significantly disagree. However, such a test does
not tell us about the  strength  of their agreement, which can be evalu-
ated by a statistic called Kappa.

3.3 Kappa

The two experts could be agreeing just by chance alone, since both ex-
perts are more likely to recommend medical therapy for these patients.
Kappa is a statistic that tells us the extent of the agreement between the
two experts above and beyond chance agreement.

K =  
Proportion of observed agreement Proportion of agreement by chance

  Proportion of agreement by chance

–

–1
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To calculate the expected number of cases in each cell of the table,
we follow the procedure described for chi-square in Section 3.1. The
cells a and d in Table 3.1 represent agreement. The expected number
by chance alone is

cell a :   =  
494 488

661
365

×

cell d :    =  
167 173

661
44

×

So the proportion of agreement expected by chance alone is

365 44
661

619
 +  

 =  .

that is, by chance alone the experts would be expected  to agree 62% of
the time. The proportion of observed agreement is

397 76
661

716
 +  

 =  .

Kappa =   =   =  
. – .

– .

.

.
.

716 619
1 619

097
381

25

If the two experts agreed at the level of chance only, Kappa would be 0;
if the two experts agreed perfectly Kappa would be 1. The topic of
Kappa is thoroughly described in the book by Fleiss listed in the Sug-
gested Readings.

3.4 Description of a Population: Use of the Standard
Deviation

In the case of continuous variables, as for discrete variables, we may be
interested in description or in inference. When we wish to describe a
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population with regard to some characteristic, we generally use the
mean or average as an index of central tendency of the data.

Other measures of central tendency are the median  and the mode .
The median is that value above which 50% of the other values lie and
below which 50% of the values lie. It is the middle value or the 50th
percentile. To find the median of a set of scores we arrange them in
ascending (or descending) order and locate the middle value if there
are an odd number of scores, or the average between the two middle
scores if there are an even number of scores. The mode is the value
that occurs with the greatest frequency. There may be several modes in
a set of scores but only one median and one mean value. These defini-
tions are illustrated below. The mean is the measure of central ten-
dency most often used in inferential statistics.

Measures of Central Tendency

Set of scores Ordered

12 6

12 8

6 10

8 11 Median

11 12 Mode

10 12

15 15    

SUM: 74 Mean = 74/7 = 10.6

The true mean of the population is called m and we estimate that
mean from data obtained from a sample of the population. The sample
mean is called x (read as x bar). We must be careful to specify exactly
the population from which we take a sample. For instance, in the gen-
eral population the average I.Q. is 100, but the average I.Q. of the
population of children age 6 to 11 years whose fathers are college
graduates is 112.9 Therefore, if we take a sample from either of these
populations, we would be estimating a different population mean and
we must specify to which population we are making inferences.
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However, the mean does not provide an adequate description of a
population. What is also needed is some measure of variability of the
data around the mean. Two groups can have the same mean but be
very different. For instance, consider a hypothetical group of children
each of whose individual I.Q. is 100; thus, the mean is 100. Compare
this to another group whose mean is also 100 but includes individuals
with I.Q.’s is of 60 and those with I.Q.s of 140. Different statements
must be made about these two groups: one is composed of all average
individuals; the other includes both retardates and geniuses.

The most commonly used index of variability is the standard devia-
tion (s.d.) , which is a type of measure related to the average distance of
the scores from their mean value. The square of the standard deviation
is called variance . The population standard deviation is denoted by the
Greek letter σ (sigma). When it is calculated from a sample, it is written
as s.d. and is i llustrated in the example below:

I.Q. scores Deviations from mean
Squared scores

for B

Group A Group B xi – xB (xi – xB ) 2 xB
2

100 60 –40 1600 3600

100 140 40 1600 19,600

100 80 –20 400 6400

100 120 20 400 14,400

Σ = 400

x A  = mean

 = 100

Σ = 400

xB  = mean

 = 100

Σ = 0 Σ = 4000 of
squared

devia tions

Σ = 44,000 sum
of squares

Note: The symbol “Σ” means “sum.”

Note: The sum of deviations from the mean, as in column 3, is always 0; that
is why we sum the squared deviations, as in column 4.
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A Bx  =  mean =   =       x  =   =  
400
4

100
400
4

100;

s. d. =  
of (each value -  mean of group)

n
 =  

(x  -  x )
n
i

2 2

1 1
∑ ∑

– –

s.d .  =   =  A
0
3

0;

(In Group A since each score is equal to the mean of 100, there are no
deviations from the mean of A.)

s.d .  =   =   =  B
4000

3
1333 36 51.

An equivalent formula for s.d. that is more suited for actual calcula-
tions is

s. d. =  x   n x
n
i∑ 2 2

1
–

–

For group B we have

s. d. =   =   =   =  
44000 4 1

3
44000 40000

3
4000

3
36 51

– –
.

( 00)2

Variance = (s.d.)2
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Note the mean of both groups is 100 but the standard deviation of
group A is 0 while the s.d. of group B is 36.51. (We divide the squared
deviations by n – 1, rather than by n because we are estimating the
population σ from sample data, and dividing by n – 1 gives a better es-
timate. The mathematical reason is complex and beyond the scope of
this book.)

3.5 Meaning of the Standard Deviation: The Normal
Distribution

The standard deviation is a measure of the dispersion or spread of the
data. Consider a variable like I.Q., which is normally distributed, that
is, it can be described by the familiar, bell-shaped curve where most of
the values fall around the mean with decreasing number of values at
either extremes. In such a case, 68% of the values lie within 1 standard
deviation on either side of the mean, 95% of the values lie within 2
standard deviations of the mean, and 99% of the values lie within 3
standard deviations of the mean.

This is illustrated in Figure 3.1.

Figure 3.1
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In the population at large, 95% of people have I.Q.s between 68
and 132. Approximately 2.5% of people have I.Q.s above 132 and an-
other 2.5% of people have I.Q.s below 68. (This is indicated by the
shaded areas at the tails of the curves.)

If we are estimating from a sample and if there are a large number
of observations, the standard deviation can be estimated from the range
of the data, that is, the difference between the smallest and the highest
value. Dividing the range by 6 provides a rough estimate of the stan-
dard deviation if the distribution is normal, because 6 standard devia-
tions (3 on either side of the mean) encompass 99%, or virtually all, of
the data.

On an individual, clinical level, knowledge of the standard deviation
is very useful in deciding whether a laboratory finding is normal, in the
sense of “healthy.” Generally a value that is more than 2 standard de-
viations away from the mean is suspect, and perhaps further tests need
to be carried out.

For instance, suppose as a physician you are faced with an adult
male who has a hematocrit reading of 39. Hematocrit is a measure of
the amount of packed red cells in a measured amount of blood. A low
hematocrit may imply anemia, which in turn may imply a more serious
condition. You also know that the average hematocrit reading for adult
males is 47. Do you know whether the patient with a reading of 39 is
normal (in the sense of healthy) or abnormal? You need to know the
standard deviation of the distribution of hematocrits in people before
you can determine whether 39 is a normal value. In point of fact, the
standard deviation is approximately 3.5; thus, plus or minus 2 stan-
dard deviations around the mean results in the range of from 40 to 54
so that 39 would be slightly low. For adult females, the mean hema-
tocrit is 42 with a standard deviation of 2.5, so that the range of plus or
minus 2 standard deviations away from the mean is from 37 to 47.
Thus, if an adult female came to you with a hematocrit reading of 39,
she would be considered in the “normal” range.
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3.6 The Difference Between Standard Deviation and
Standard Error

Often data in the literature are reported as  ± s.d. (read as mean + or
–1 standard deviation). Other times they are reported as  ± s.e. (read as
mean + or –1 standard error). Standard error  and standard deviation
are often confused, but they serve quite different functions. To under -
stand the concept of standard error, you must remember that the pur -
pose of statistics is to draw inferences from samples of data to the
population from which these samples came. Specifically, we are inter -
ested in estimating the true mean of a population for which we have a
sample mean based on, say, 25 cases. Imagine the following:

Population

I.Q. scores, xi

Sample means based on

25 people randomly selected

110 x1  = 102

100

105 x
2  = 99

 98

140 x
3  = 101

— x
4  = 98

— —

100 100

m  = mean of
all the  xi 's

mx  = m
mean of the means is m ,

the population mean

σ =  population standard
deviation

σ

n
 =

standard deviation of the distri-

bution of the x ’s called the stan-

dard error of the mean = σ x
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There is a population of I.Q. scores whose mean is 100 and its
standard deviation is 16. Now imagine that we draw a sample of 25
people at random from that population and calculate the sample mean
x . This sample mean happens to be 102. If we took another sample of
25 individuals we would probably get a slightly different sample mean,
for example 99. Suppose we did this repeatedly an infinite (or a very
large) number of times, each time throwing the sample we just drew
back into the population pool from which we would sample 25 people
again. We would then have a very large number of such sample
means. These sample means would form a normal distribution. Some
of them would be very close to the true population mean of 100, and
some would be at either end of this “distribution of means” as in Fig-
ure 3.2.

This distribution of sample means would have its own standard de-
viation, that is, a measure of the spread of the data around the mean of
the data. In this case, the data are sample means rather than individual
values. The standard deviation of this distribution of means is called
the standard error of the mean .

It should be pointed out that this distribution of means, which is
also called the sampling distribution of means, is a theoretical con-
struct. Obviously, we don't go around measuring samples of the
population to construct such a distribution. Usually, in fact, we just
take one sample of 25 people and imagine what this distribution might
be. However, due to certain mathematical derivations, we know a lot
about this theoretical distribution of population means and therefore
we can draw important inferences based on just one sample mean.
What we do know is that the distribution of means is a normal distri-
bution, that its mean is the same as the population mean of the indi-
vidual values, that is, the mean of the means is m, and that its standard
deviation is equal to the standard deviation of the original individual
values divided by the square root of the number of people in the
sample.

Standard error of the mean  =

x
 =  σ

σ
n
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In this case it would be

16

25

16
5

3 2 =   =  .

The distribution of means would look as shown in Figure 3.2.
Please note that when we talk about population values, which we

usually don't know but are trying to estimate, we refer to the mean as
m and the standard deviation as σ. When we talk about values calcu-
lated from samples, we refer to the mean as x , the standard deviation
as s.d., and the standard error as s.e.

Figure 3.2
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Figure 3.3

Now imagine that we have a distribution of means based on sam-
ples of 64 individuals. The mean of these means is also m, but its dis-

persion, or standard error, is smaller. It is 16 64 16 8 2/ /= = . This is
illustrated in Figure 3.3.

It is easily seen that if we take a sample of 25 individuals, their
mean is likely to be closer to the true mean than the value of a single
individual, and if we draw a sample of 64 individuals, their mean is
likely to be even closer to the true mean than was the mean we obtained
from the sample of 25. Thus, the larger the sample size, the better is
our estimate of the true population mean.

The standard deviation is used to describe the dispersion or vari-
ability of the scores. The standard error is used to draw inferences
about the population mean from which we have a sample.  We draw
such inferences by constructing confidence intervals, which are dis-
cussed in Section 3.11.
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3.7 Standard Error of the Difference Between Two Means

This concept is analogous to the concept of standard error of the
mean. The standard error of the differences between two means is the
standard deviation of a theoretical distribution of differences between
two means. Imagine a group of men and a group of women each of
whom have an I.Q. measurement. Suppose we take a sample of 64
men and a sample of 64 women, calculate the mean I.Q.s of these two
samples, and obtain their differences. If we were to do this an infinite
number of times, we would get a distribution of differences  between
sample means of two groups of 64 each. These difference scores would
be normally distributed; their mean would be the true average differ-
ence between the populations of men and women (which we are trying
to infer from the samples), and the standard deviation of this distribu-
tion is called the standard error of the differences between two means.

The standard error of the difference between two means of popula-
tions X and Y is given by the formula

x - y
x

x

y

y
 =  

n
 +  

nσ σ σ2 2

where  σ x
2 is the variance of population X and σ y

2 is the variance of
population Y; nx  is the number of cases in the sample from population
X and ny  is the number of cases in the sample from population Y.

In some cases we know or assume that the variances of the two
populations are equal to each other and that the variances that we cal-
culate from the samples we have drawn are both estimates of a com-
mon variance. In such a situation, we would want to pool these esti-
mates to get a better estimate of the common variance. We denote this
pooled estimate  as s2

pooled = sp
2 and we calculate the standard error of the

difference between means as
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s.e .  =  s
n

 +  
n

 =  s
n

 +  
n

x - y p
x y

p
x y

2 1 1 1 1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

We calculate s 2
p from sample data:

p
x x y y

x y
s  =  

(n   ) s  +  (n   ) s
n + n

2
2 21 1

2
– –

–

This is the equivalent to

p
i i

x y
s  =  

(x x )  +  (y y )
n + n

2
2 2

2
∑ ∑– –

–

Since in practice we will always be calculating our values from
sample data, we will henceforth use the symbology appropriate to that.

3.8 Z Scores and the Standardized Normal Distribution

The standardized normal distribution is one whose mean = 0, standard
deviation = 1, and the total area under the curve = 1. The standard
normal distribution looks like Figure 3.4.

On the abscissa, instead of x  we have a transformation of x  called
the standard score, Z. Z is derived from  x  by the following:

Z =  x  m–
σ

Thus, the Z score really tells you how many standard deviations from
the mean a particular  x  score is.
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Figure  3.4

Any distribution of a normal variable can be transformed to a dis-
tribution of Z by taking each x value, subtracting from it the mean of
x  (i.e., m), and dividing this deviation of x  from its mean, by the stan-
dard deviation. Let us look at the I.Q. distribution again in Figure 3.5.

Thus, an I.Q. score of 131 is equivalent to a Z score of 1.96 (i.e., it
is 1.96, or nearly 2, standard deviations above the mean I.Q.).

Z =   =  131 100
16

1 96– .

One of the nice things about the Z distribution is that the probabil-
ity of a value being anywhere between two points is equal to the area
under the curve between those two points. (Accept this on faith.) It
happens that the area to the right of 1.96 corresponds to a probability
of .025, or 2.5% of the total curve. Since the curve is symmetrical, the
probability of Z being to the left of –1.96 is also .025. Invoking the ad-
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Figure 3.5

ditive law of probability (Section 2.2), the probability of a Z being either
to the left of –1.96 or to the right of +1.96 is .025 + .025 = .05. Trans-
forming back up to x , we can say that the probability of someone hav-
ing an I.Q. outside of 1.96 standard deviations away from the mean
(i.e., above 131 or below 69) is .05, or only 5% of the population have
values that extreme. (Commonly, the Z value of 1.96 is rounded off to
±2 standard deviations from the mean as corresponding to the cutoff
points beyond which lies 5% of the curve, but the accurate value is
1.96.)

A very important use of Z derives from the fact that we can also
convert a sample mean (rather than just a single individual value) to a
Z score.
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Figure 3.6

Z =  x  m
x

–
σ

The numerator now is the distance of the sample mean from the
population mean and the denominator is the standard deviation of the
distribution of means, which is the standard error of the mean . This is
illustrated in Figure 3.6, where we are considering means based on 25

cases each. The s.e. is 16 25 16 5 3 2/ / .= = .
Now we can see that a sample mean of 106.3 corresponds to a Z

score of 1.96.

Z =   =  106 3 100
3 2

1 96. –
.

.
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We can now say that the probability that the mean I.Q. of a group of 25
people is greater than 106.3 is .025. The probability that such a mean is
less than 93.7 is also .025.

A Z score can also be calculated for the difference between two
means.

Z =  
(x x )  (m m )

A B A B

A Bx x

– – –
–σ

But mA  – mB is commonly hypothesized to be 0 so the formula be-
comes

Z =  x xA B

A Bx x

–
–σ

You can see that a Z score in general is a distance between some
value and its mean divided by an appropriate standard error .

This becomes very useful later on when we talk about confidence
intervals in Sections 3.10 to 3.14.

3.9 The t Statistic

Suppose we are interested in sample means and we want to calculate a
Z score. We don't know what the population standard deviation is, but
if our samples are very large, we can get a good estimate of σ by cal-
culating the standard deviation, s.d., from our sample, and then getting

the standard error as usual: s.e. = s.d./ n . But often our sample is not
large enough. We can still get a standardized score by calculating a
value called Student’s t:
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t =  x m
s.e x

–
.

It looks just like Z; the only difference is that we calculate it from the
sample and it is a small sample.

We can obtain the probability of getting certain t values similarly to
the way we obtained probabilities of Z values—from an appropriate
table. But it happens, that while the t distribution looks like a normal Z
distribution, it is just a little different, thereby giving slightly different
probabilities. In fact there are many t distributions (not just one, like
for Z). There is a different t distribution for each different sample size.
(More will be explained about this in Section 3.10.)

In our example, where we have a mean based on 25 cases, we
would need a t value of 2.06  to correspond to a probability of .025 (in-
stead of the 1.96 for the Z distribution). Translating this back to the
scale of sample means, if our standard error were 3.2, then the prob-
ability would be .025 that we would get a sample mean as large as 106.6
(which is 100 + 2.06 times 3.2), rather than 106.3 (which is 100 + 1.96
times 3.2) as in the Z distribution. This may seem like nit-picking, since
the differences are so small. In fact, as the sample size approaches in-
finity, the t distribution becomes exactly like the Z distribution, but, the
differences between Z and t get larger as the sample size gets smaller,
and it is always safe to use the t distribution. For example, for a mean
based on five cases, the t value would be 2.78 instead of the Z of 1.96.
Some t values are tabled in Appendix A. More detailed tables are in
standard statistics books.

3.10 Sample Values and Population Values Revisited

All this going back and forth between sample values and population
values may be confusing. Here are the points to remember:

(1) We are always interested in estimating population values from
samples.

(2) In some of the formulas and terms, we use population values
as if we knew what the population values really are. We of
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course don't know the actual population values, but if we have
very large samples, we can estimate them quite well from our
sample data.

(3) For practical purposes, we will generally use and refer to tech-
niques appropriate for small samples, since that is more com-
mon and safer (i.e., it doesn't hurt even if we have large sam-
ples).

3.11 A Question of Confidence

A confidence interval establishes a range and specifies the probability
that this range encompasses the true population mean. For instance, a
95% confidence interval (approximately) is set up by taking the sample
mean, x , plus or minus two standard errors of the mean.

95% confidence interval:

x s.e. x s d
n

± = ±
⎛
⎝
⎜

⎞
⎠
⎟2 2 . .

Thus, if we took a random sample of 64 applicants to the Albert
Einstein College of Medicine and found their mean I.Q. to be 125, say,
(a ficti tious figure) we might like to set up a 95% confidence interval to
infer what the true mean of the population of applicants really is. The
95% confidence interval is the range between 125–2 s.e. and 125 + 2s.e.
We usually phrase this as,

“We are 95% confident that the true mean IQ of Einstein medical
school applicants lies within 125 ± 2 s.e.”

For the purposes of this example, assume that the standard devia-
tion is 16. (This is not a particularly good assumption since the I.Q.
variabili ty of medical school applicants is considerably less than the
variability of I.Q. in the population in general.)  Under this assump-
tion, we arrive at the following range:
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125 2 16

64
125 2 16

8
125 4 121 129   =  ± ± ±( ) ( )  =     =  –

Our statement now is as follows: “The probability is approximately
.95 that the true mean I.Q. of Einstein Medical School applicants lies
within the range 121–129.” (A more rigorous interpretation of this is
given in Section 3.11.)

A 99% confidence interval is approximately the sample mean
± 3s.e. In our example this interval would be:

125 3
16

64
125 6 119 131

( )
=  = –± ⎡

⎣⎢
⎤
⎦⎥

±

We would then be able to say: “The probability is approximately .99
that the true mean I.Q. of Einstein Medical School applicants lies
within the range 119–131.”

The “approximately” is because to achieve .95 probability you don't
multiply the s.e. by 2 exactly as we did here; we rounded it for conve-
nience. The exact  multiplying factor depends on how large the sample
is. If the sample is very large, greater than 100, we would multiply the
s.e. by 1.96 for 95% confidence intervals and by 2.58 for 99% confi-
dence intervals. If the sample is smaller, we should look up the multi-
plier in tables of t values, which appear in many texts. These t values
are different for different “degrees of freedom,” explained in Section
3.13, which are related to sample sizes. Some t values are shown in
Appendix A. (Also refer back to Section 3.9 for the meaning of t statis-
tics.)

Note that for a given sample size we trade off degree of certainty for
size of the interval. We can be more certain that our true mean lies
within a wider range but if we want to pin down the range more pre-
cisely, we are less certain about it (Figure 3.7). To achieve more preci-
sion and maintain a high probability of being correct in estimating the
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Figure 3.7

range, it is necessary to increase the sample size. The main point here
is that when you report a sample mean as an estimate of a population
mean, it is most desirable to report the confidence limits.

3.12 Confidence Limits and Confidence Intervals

Confidence limits are the outer boundaries that we calculate and about
which we can say: we are 95% confident that these boundaries or limits
include the true population mean. The interval between these limits is
called the confidence interval.  If we were to take a large number of
samples from the population and calculate the 95% confidence limits
for each of them, 95% of the intervals bound by these limits would
contain the true population mean. However, 5% would not contain it.
Of course, in real life we only take one sample and construct confi-
dence intervals from it. We can never be sure whether the interval cal-
culated from our particular sample is one of the 5% of such intervals
that do not contain the population mean. The most we can say is that
we are 95% confident it does contain it. As you can see, we never know
anything for sure.

If an infinite number of independent random samples were drawn
from the population of interest (with replacement), then 95% of the
confidence intervals calculated from the samples (with mean x, and
standard error s.e.) will encompass the true population mean m.

Figure 3.8 illustrates the above concepts.
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Figure 3.8

3.13 Degrees of Freedom

The t values that we use as the multiplier of the standard error to con-
struct confidence intervals depend on something called the degrees of
freedom  (df), which are related to the sample size. When we have one
sample, in order to find the appropriate t value to calculate the confi-
dence limits, we enter the tables with n – 1 degrees of freedom, where n
is the sample size. An intuitive way to understand the concept of df is to
consider that if we calculate the mean of a sample of, say, three values,
we would have the “freedom” to vary two of them any way we liked af-
ter knowing what the mean is, but the third must be fixed in order to
arrive at the given mean. So we only have 2 “degrees of freedom.” For
example, if we know the mean of three values is 7, we can have the fol-
lowing sets of data:
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Value 1: 7 –50

Value 2: 7 +18

Value 3: 7 +53

Sum = 21 21
Mean = x = 7 x = 7

In each case, if we know values 1 and 2, then value 3 is determined
since the sum of these values must be 21 in order for the mean to be 7.
We have “lost” one degree of freedom in calculating the mean.

3.14 Confidence Intervals for Proportions

A proportion can be considered a continuous variable. For example, in
the anticoagulant study described in Section 3.1, the proportion of
women in the control (placebo-treated) group who survived a heart a t-
tack was found to be 89/129 = .69. A proportion may assume values
along the continuum between 0 and 1. We can construct a confidence
interval around a proportion in a similar way to constructing confi-
dence intervals around means. The 95% confidence limits for a pro-
portion are p  ± 1.96 s.e. p, where s.e. p is the standard error of a propor-
tion.

To calculate the standard error of a proportion, we must first cal-
culate the standard deviation of a proportion and divide it by the square
root of n. We define our symbology:

s =  standard deviation of a proportion =  pq

p =  sample proportion =  
number of survivors in control group

total number of women in control group
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q =    p =  
number dead in control group

total number of women in control group
1 –

s.e .  =  
pq

n
 =  

pq

n
p

In our example of women survivors of a heart attack in the control
group, the 95% confidence interval is

.   .   
(. )  (. )

 =  .   .69 1 96
69 31

129
69 08± × ±x

And we can make the statement that we are 95% confident that the
population proportion of untreated women surviving a heart attack is
between .61 and .77 or 61% and 77%. (Remember this refers to the
population from which our sample was drawn. We cannot generalize
this to all women having a heart attack.)

For 99% confidence limits, we would multiply the standard error of
a proportion by 2.58, to get the interval .59 to .80. The multiplier is the
Z value that corresponds to .95 for 95% confidence limits or .99 prob-
ability for 99% confidence limits.

3.15 Confidence Intervals Around the Difference Between
Two Means

We can construct confidence intervals around a difference between
means in a similar fashion to which we constructed confidence inter -
vals around a single mean. The 95% confidence limits around the dif-
ference between means are given by
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( ) ( ) ( )x y t s.ed f , .95 x y– . –±

In words, this is the difference between the two sample means, plus
or minus an appropriate t value, times the standard error of the differ-
ence; df is the degrees of freedom and .95 says that we look up the t
value that pertains to those degrees of freedom and to .95 probability.
The degrees of freedom when we are looking at two samples are nx  +
ny–2. This is because we have lost one degree of freedom for each of
the two means we have calculated, so our total degrees of freedom is
(nx–1) + (ny–1) = nx  + ny–2.

As an example consider that we have a sample of 25 female and 25
male medical students. The mean I.Q.s for each sample are

f e m a l e s m a l e s p o o l e dx x s d f               =  ,      =  ,       =  ,        =  130 126 12 48

The 95% confidence interval for the mean difference between men and
women is calculated as follows:

From t tables, we find that the t value for df = 48 is 2.01

f e m a l e s m a l e s p
x y

x x s
n n

           –    .    +   =± ×
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟2 01

1 1

( ) ( )130 126 2 01 12 1 25 1 25 4 6 8    .   /  +  /  =    .– ± × ±

The interval then is -2.8 to 10.8, and we are 95% certain it includes the
true mean difference between men and women. This interval includes
0 difference, so we would have to conclude that the difference in I.Q.
between men and women may be zero.
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3.16 Comparisons Between Two Groups

A most common problem that arises is the need to compare two groups
on some dimension. We may wish to determine, for instance, whether
(1) administering a certain drug lowers blood pressure, or (2) drug A
is more effective than drug B in lowering blood sugar levels, or (3)
teaching first-grade children to read by method I produces higher
reading achievement scores at the end of the year than teaching them
to read by method II.

3.17 Z-Test for Comparing Two Proportions

As an example we reproduce here the table in Section 3.1 showing data
from a study on anticoagulant therapy.

Observed Frequencies

Control Treated

Lived 89 223 312

Died 40 39 79

Total 129 262 391

If we wish to test whether the proportion of women surviving a
heart a ttack in the treated group differs from the proportion surviving
in the control group we set up our null hypothesis as

HO : P1 = P2 or P1 – P2 = 0; P1 = proportion surviving in
treated population

P2 = proportion surviving in
control population

HA : P1 – P2 ≠ 0 (the difference does not equal 0)
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We calculate

Z =  
p p

s.e p p

1 2

1 2

–

. –

1 1 1 1

2 2 2 2

223
262

85 1 15 262

89
129

69 1 31 129

p  =   =  . ,     q  =    p  =  . ,     n  =  

p  =   =  . ,     q  =    p  =  . ,     n  =  

–

–

Thus, the numerator of Z = .85 – .69 = .16.

The denominator =
standard error of the difference between two proportions =

s.e .  =  pq 1
n

 +  1
n( p p )

1 21 2– ˆ ˆ
⎛

⎝
⎜

⎞

⎠
⎟

where p̂ and q̂  are pooled estimates based on both treated and control
group data. We calculate it as follows:

p̂ =  
n p + n p

n +n =
number of survivors in treated +  control

total number of patients in treated +  control

=
.  +  .

 +  
 =   +   =  .

1 1 2 2

1 2

262 85 129 69
262 129

223 89
391

80
( ) ( )
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ˆ – ˆ –q =    p =    .  =  .1 1 80 20

s.e  =  .  .   +   =  .( p p ). –1 2
80 20

1
262

1
129

043( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟

Z =  .   .
.

 =  .85 69
043

3 72–

We must now look to see if this value of Z exceeds the critical value .
The critical value is the minimum value of the test statistics that we
must get in order to reject the null hypothesis at a given level of signif i-
cance.

The critical value of Z that we need to reject HO  at the .05 level of
significance is 1.96. The value we obtained is 3.74. This is clearly a
large enough Z to reject HO  at the .01 level at least. The critical value for
Z to reject HO  at the .01 level is 2.58.

Note that we came to the same conclusion using the chi-square test
in Section 3.1. In fact Z2 = χ2 = (3.74)2 = 13.99 and the uncorrected
chi-square we calculated was 13.94 (the difference is due to rounding
errors). Of course the critical values of χ2 and Z have to be looked up in
their appropriate tables. Some values appear in Appendix A.

3.18 t-Test for the Difference Between Means of Two
Independent Groups: Principles

When we wanted to compare two groups on some measure that was a
discrete or categorical variable, like mortality in two groups, we used
the chi-square test, described in Section 3.1. Or we could use a test be-
tween proportions as described in Section 3.17. We now discuss a
method of comparing two groups when the measure of interest is a
continuous variable.
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Let us take as an example the comparison of the ages at first preg-
nancy of two groups of women: those who are lawyers and those who
are paralegals. Such a study might be of sociological interest, or it
might be of interest to law firms, or perhaps to a baby foods company
that is seeking to focus its advertising strategy more effectively.

Assuming we have taken proper samples of each group, we now
have two sets of values: the ages of the lawyers (group A) and the ages
of the paralegals (group B), and we have a mean age for each sample.
We set up our null hypothesis as follows:

HO : “The mean age of the population of lawyers from which we
have drawn sample A is the same as the mean age of the
population of paralegals from which we have drawn sample
B.”

Our alternate hypothesis is

HA : “The mean ages of the two populations we have sampled are
different.”

In essence then, we have drawn samples on the basis of which we
will make inferences about the populations from which they came . We
are subject to the same kinds of type I and type II errors we discussed
before.

The general approach is as follows. We know there is variability of
the scores in group A around the mean for group A and within group
B around the mean for group B, simply because even within a given
population, people vary. What we want to find is whether the variability
between the two sample means around the grand mean of all the
scores is greater than the variability of the ages within the groups
around their own means. If there is as much variability within the
groups as between the groups, then they probably come from the same
population.

The appropriate test here is the t-test. We calculate a value known
as t, which is equal to the difference between the two sample means
divided by an appropriate standard error.  The appropriate standard
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error is called the standard error of the difference between two means
and is written as

s.e x x. –1 2

The distribution of t has been tabulated and from the tables we can
obtain the probability of getting a value of t as large as the one we actu-
ally obtained under the assumption that our null hypothesis (of no dif-
ference between means) is true. If this probability is small (i.e., if it is
unlikely that by chance alone we would get a value of t that large if the
null hypothesis were true) we would reject the null hypothesis and ac-
cept the alternate hypothesis that there really is a difference between the
means of the populations from which we have drawn the two samples.

3.19 How to Do a t-Test: An Example

Although t-tests can be easily performed on personal computers, an
example of the calculations and interpretation is given below. This sta-
tistical test is performed to compare the means of two groups under the
assumption that both samples are random, independent, and come
from normally distributed populations with unknown but equal vari-
ances.

Null Hypothesis: mA  = mB, or the equivalent: mA  – mB = 0.

Alternate Hypothesis: mA ≠ mB, or the equivalent: mA  – mB ≠ 0.

[Note: When the alternate hypothesis does not specify the direction
of the difference (by stating for instance that mA  is greater than mB) but
simply says the difference does not equal 0, it is called a two-tailed test.
When the direction of the difference is specified, it is called a one-tailed
test. More on this topic appears in Section 5.4.]

t =  x x
s
A B

x xA B

( )–
–
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Ages of Sample A Ages of Sample B

xi (xi  – x̄A) (xi  – x̄A) 2 xi (xi  – x̄B) (xi  – x̄B) 2

28 –3 9 24 2.4 5.76

30 –1 1 25 3.4 11.56

27 –4 16 20 –1.6 2.56

32 1 1 18 –3.6 12.96

34 3 9 21 –0.6 0.36

36 5 25 Σ = 108 Σ= 0 Σ= 33.20

30 –1 1

Σ= 217 Σ= 0 Σ= 62

A A
i

B B
i

Mean = x = x
n

= =  Mean = x = x
n

= = .
Σ Σ217

7
31

108
5

21 6;

(The subscript i refers to the ith score and is a convention used to
indicate that we sum over all the scores.)

The numerator of t is the difference between the two means:

31 – 21.6 = 9.4

To get the denominator of t we need to calculate the standard error of
the difference between means, which we do as follows:

First we get the pooled estimate of the standard deviation. We calculate:

p
i A i B

A B
s = x x  +  x x

n + n
 =  

 +  .
 +    

=
.

 =  .  =  .

∑ ∑( ) ( )– –

– –

2 2

2

62 33 20
7 5 2

95 20
10

9 52 3 09
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A Bx x p
A B

s = s n +
n

= .  +  = . . = . . = .–
1 1 3 09 1

7
1
5

3 09 3428 3 09 5854 1 81×

t =  
x x

s  =  .
.

 =  .A B

x xA B

–
–

9 4
1 81

5 19

This t is significant at the .001 level, which means that you would
get a value of t as high as this one or higher only 1 time out of a thou-
sand by chance if the null hypothesis were true. So we reject the null
hypothesis of no difference, accept the alternate hypothesis, and con-
clude that the lawyers are older at first pregnancy than the paralegals.

3.20 Matched Pair t-Test

If you have a situation where the scores in one group correlate with the
scores in the other group, you cannot use the regular t-test since that
assumes the two groups are independent. This situation arises when
you take two measures on the same individual. For instance, suppose
group A represents reading scores of a group of children taken at time
1. These children have then been given special instruction in reading
over a period of six months and their reading achievement is again
measured to see if they accomplished any gains at time 2. In such a
situation you would use a matched pair t-test.

Child

A

Initial reading
scores of
chi ldren

B

Scores of same
children after 6
months' train ing d = B – A d –  d̄ (d –  d̄   ) 2

(1) 60 62 2 1.4 1.96

(2) 50 54  4 3.4 11.56

(3) 70 70 0 –0.6 0.36

(4) 80 78 –2 –2.6 6.76

(5) 75 74 –1 –1.6 2.56

Sum 3 0 23.20

Mean difference = d  = 3/5 = 0.60
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Null Hypothesis: Mean difference = 0.

Alternate Hypothesis: Mean difference is greater than 0.

t =  d
s s  =  s

n

s =  
d  d 
n

 =  .  =  .  =  .

s  =  .  =  .
.

 =  .

t =  .
.

 =  .

d
d

d

;

( )Σ –
–

2

1
23 20

4
5 8 2 41

2 41
5

2 41
2 23

1 08

60
1 08

56

This t is not significant, which means that we do not reject the null
hypothesis and conclude that the mean difference in reading scores
could be zero; that is, the six months' reading program may not be ef-
fective. (Or it may be that the study was not large enough to detect a
difference, and we have committed a type II error.)

When the actual difference between matched pairs is not in itself a
meaningful number, but the researcher can rank the difference scores
(as being larger or smaller for given pairs). The appropriate test is the
Wilcoxon matched-pairs rank sums test. This is known as a nonpara-
metric test , and along with other such tests is described with exquisite
clarity in the classic book by Sidney Siegel, Nonparametric Statistics for
the Behavioral Sciences  (listed in the Suggested Readings).

3.21 When Not to Do a Lot of t-Tests:
The Problem of Multiple Tests of Significance

A t-test is used for comparing the means of two groups. When
there are three or more group means to be compared, the t-test is not
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appropriate. To understand why, we need to invoke our knowledge of
combining probabilities from Section 2.2.

Suppose you are testing the effects of three different treatments for
high blood pressure. Patients in one group A receive one medication, a
diuretic; patients in group B receive another medication, a
beta-blocker; and patients in group C receive a placebo pill. You want to
know whether either drug is better than placebo in lowering blood
pressure and if the two drugs are different from each other in their
blood pressure lowering effect.

There are three comparisons that can be made: group A versus
group C (to see if the diuretic is better than placebo), group B versus
group C (to see if the beta-blocker is better than the placebo), and
group A versus group B (to see which of the two active drugs has more
effect). We set our significance level at .05, that is, we are willing to be
wrong in rejecting the null hypothesis of no difference between two
means, with a probability of .05 or less (i.e., our probability of making
a type I error must be no greater than .05). Consider the following:

Comparison
Probability of
type I error

Probability of not  making a
type I error =

1 – P (type I error)

1. A vs. C .05 1 – .05 = .95

2. B vs. C .05 1 – .05 = .95

3. A vs. B .05 1 – .05 = .95

The probability of not  making a type I error in the first comparison
and not making it in the second comparison and not making it in the
third comparison = .95 x .95 x .95 = .86. We are looking here at the
joint occurr ence of three events (the three ways of not  committing a
type I error) and we combine these probabilities by multiplying the indi-
vidual probabilities. (Remember, when we see “and” in the context of
combining probabilities, we multiply, when we see “or” we add.) So
now, we know that the overall probability of not  committing a type I
error in any of the three possible comparisons is .86. Therefore, the
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probability of committing such an error is 1—the probability of not
committing it, or 1 – .86 = .14. Thus, the overall probability of a type I
error would be considerably greater than the .05 we specified as desir-
able. In actual fact, the numbers are a little different because the three
comparisons are not independent events, since the same groups are
used in more than one comparison, so combining probabilities in this
situation would not involve the simple multiplication rule for the joint
occurrence of independent events. However, it is close enough to illus-
trate the point that making multiple comparisons in the same experi-
ment results in quite a different significance level (.14 in this example)
than the one we chose (.05). When there are more than three groups to
compare, the situation gets worse.

3.22 Analysis of Variance: Comparison Among Several
Groups

The appropriate technique for analyzing continuous variables when
there are three or more groups to be compared is the analysis of vari-
ance, commonly referred to as ANOVA. An example might be com-
paring the blood pressure reduction effects of the three drugs.

3.23 Principles

The principles involved in the analysis of variance are the same as
those in the t-test. Under the null hypothesis we would have the fol-
lowing situation: there would be one big population and if we picked
samples of a given size from that population we would have a bunch
of sample means that would vary due to chance around the grand
mean of the whole population. If it turns out they vary around the
grand mean more than we would expect just by chance alone, then
perhaps something other than chance is operating. Perhaps they don't
all come from the same population. Perhaps something distinguishes
the groups we have picked. We would then reject the null hypothesis
that all the means are equal and conclude the means are different from
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each other by more than just chance. Essentially, we want to know if
the variability of all the groups means is substantially greater than the
variability within each of the groups around their own mean.

We calculate a quantity known as the between-groups variance,
which is the variability of the group means around the grand mean of
all the data. We calculate another quantity called the within-groups
variance , which is the variability of the scores within each group
around its own mean. One of the assumptions of the analysis of vari-
ance is that the extent of the variability of individuals within groups is
the same for each of the groups, so we can pool the estimates of the
individual within group variances to obtain a more reliable estimate of
overall within-groups variance. If there is as much variability of indi-
viduals within the groups as there is variability of means between  the
groups, the means probably come from the same population, which
would be consistent with the hypothesis of no true difference among
means, that is, we could not reject the null hypothesis of no difference
among means.

The ratio of the between-groups variance to the within-groups
variance is known as the F ratio. Values of the F distribution appear in
tables in many statistical texts and if the obtained value from our ex-
periment is greater than the critical value  that is tabled, we can then
reject the hypothesis of no difference.

There are different critical values of F depending on how many
groups are compared and on how many scores there are in each
group. To read the tables of F, one must know the two values of de-
grees of freedom (df). The df corresponding to the between-groups
variance, which is the numerator of the F ratio, is equal to k  – 1, where
k  is the number of groups. The df corresponding to the denominator
of the F ratio, which is the within-groups variance, is equal to k × (n –
1), that is, the number of groups times the number of scores in each
group minus one. For example, if in our hypertension experiment
there are 100 patients in each of the three drug groups, then the nu-
merator degrees of freedom would be 3 – 1 = 2, and the denominator
degrees of freedom would be 3 × 99 = 297. An F ratio would have to be
at least 3.07 for a significance level of .05. If there were four groups
being compared then the numerator degrees of freedom would be 3,
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and the critical value of F would need to be 2.68. If there is not an
equal number of individuals in each group, then the denominator de-
grees of freedom is (n1 – 1) + (n2 – 1) + (n3 – 1).

We will not present here the actual calculations necessary to do an
F test because nowadays these are rarely done by hand. There are a
large number of programs available for personal computers that can
perform F tests, t-tests, and most other statistical analyses. However,
shown below is the kind of output that can be expected from these pro-
grams. Shown are summary data from the TAIM study (Trial of An-
tihypertensive Interventions and Management). The TAIM study was
designed to evaluate the effect of diet and drugs, used alone or in com-
bination with each other, to treat overweight persons with mild hyper-
tension (high blood pressure). 10,11

The next table shows the mean drop in blood pressure after six
months of treatment with each drug, the number of people in each
group, and the standard deviation of the change in blood pressure in
each group.

Drug group n

Mean drop (in diastolic
blood pressure units

after 6 months of
treatment)

Standard
deviation

A. Diuretic 261 12.1 7.9

B. Beta-blocker 264 13.5 8.2

C. Placebo 257 9.8 8.3

The next table results from an analysis of variance of the data
from this study. It is to be interpreted as follows:
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ANOVA

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square F ratio P2 > F

Between
groups

2 1776.5 888.2 13.42 .0001

Within
groups

779 5256.9 66.2

781

The mean square is the sum of squares divided by the degrees of
freedom. For between-groups, it is the variation of the group means
around the grand mean, while for within-groups it is the pooled esti-
mate of the variation of the individual scores around their respective
group means. The within-groups mean square is also called the error
mean square. (An important point is that the square root of the error
mean square is the pooled estimate of the within-groups standard de-

viation. In this case it is 66 2 8 14. .= . It is roughly equivalent to the av-
erage standard deviation.) F is the ratio of the between to the within
mean squares; in this example it is 888.2/66.2 = 13.42.

The F ratio is significant at the .0001 level, so we can reject the null
hypothesis that all group means are equal. However, we do not know
where the difference lies. Is group A different from group C but not
from group B? We should not simply make all the pairwise compari-
sons possible because of the problem of multiple comparisons dis-
cussed above. But there are ways to handle this problem. One of them
is the Bonferroni procedure, described in the next section.

3.24 Bonferroni Procedure: An Approach to Making
Multiple Comparisons

This is one way to handle the problem of multiple comparisons. The
Bonferroni procedure implies that if for example we make five com-
parisons, the probability that none  of the five p values falls below .05 is
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at least 1 – (5 × .05) = .75 when the null hypothesis of equal means is
really true. That means that there is a probability of up to .25 that at
least one p value will reach the .05 significance level by chance alone
even if the treatments really do not differ . To get around this, we divide
the chosen overall significance level by the number of two-way compar-
isons to be made, consider this value to be the significance level for any
single comparison, and reject the null hypothesis of no difference only
if it achieves this new significance level.

For example, if we want an overall significance level of .05 and we
will make three comparisons between means, we would have to achieve
.05/3 = .017 level in order to reject the  null hypothesis and conclude
there is a difference between the two means. A good deal of
self-discipline is required to stick to this procedure and not declare a
difference between two means as unlikely to be due to chance if the
particular comparison has significance at p = .03, say, instead of .017.
The Bonferroni procedure does not require a prior F test. Let us apply
the Bonferroni procedure to our data.

First we compare each of the drugs to placebo. We calculate the t
for the difference between means of group A versus group C.

t =  
x x
s.e
A C

x xA C

–
. –

s.e  =  s n
 +  

nA Cx x p
A C

. –
1 1

12 1 9 8

8 14
1

261
1

257

2 3

715
3 22

0014

.   .

.  +  

 =  
.

.
 =  .

p =  .

–

Note that we use 8.14 as s pooled. We obtained this from the analysis of
variance as an estimate of the common standard deviation. The de-
grees of freedom to enter the t tables are 261 + 257 – 2 = 516.
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It turns out that the probability of getting such a high t value by
chance is only .0014. We can safely say the diuretic reduces blood pres-
sure more than the placebo. The same holds true for the comparison
between the beta-blocker and placebo. Now let us compare the two
drugs, B versus A:

t =  
.   .

.  +  

 =  
.

.
 =  .

13 5 12 1

8 14
1

264
1

261

1 4

711
1 97

–

The p value corresponding to this t value is .049. It might be
tempting to declare a significant difference at the .05 level, but remem-
ber the Bonferroni procedure requires that we get a p value of .017 or
less for significance adjusted for multiple comparisons. The critical
value of t corresponding to p = .017 is 2.39 and we only got a t of 1.97.
Recently,12 there has been some questioning of the routine adjustment
for multiple comparisons on the grounds that we thereby may commit
more type II errors and miss important effects. In any case p levels
should be reported so that the informed reader may evaluate the evi-
dence.

3.25 Analysis of Variance When There Are Two
Independent Variables: The Two-Factor ANOVA

The example above is referred to as the one-way ANOVA because you
can divide all the scores in one way only, by the drug group to which
patients were assigned. The drug group is called a “factor” and this
factor has three levels, meaning there are three categories of drug.
There may, however, be another factor that classifies individuals, and
in that case we would have a two-way, or a two-factor, ANOVA. In the
experiment we used as an example, patients were assigned to one of the
three drugs noted above, as well as to one of three diet regi-
mens—weight reduction, sodium (salt) restriction, or no change from
their usual diet, which is analogous to a placebo diet condition. The
diagram below illustrates this two-factor design, and the mean drop in
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blood pressure in each group, as well as the numbers of cases in each
group, which are shown in parenthesis.

Diet

Drug Usual
Weight

reduction
Sodium

restriction Total

Diuretic 10.2
(87)

14.5
(86)

11.6
(88)

12.1
(261)

Beta-blocker 12.8
(86)

15.2
(88)

12.6
(90)

13.5
(264)

Placebo 8.7
(89)

10.8
(89)

10.1
(79)

9.8
(257)

Total 10.5
(262)

13.5
(263)

11.5
(257)

Now we are interested in comparing the three means that represent
change in blood pressure in the drug groups, the three means that rep-
resent changes in the diet groups, and the interaction between drug
and diet. We now explain the concept of interaction.

3.26 Interaction Between Two Independent Variables

Interaction between two independent variables refers to differences in
the effect of one variable depending on the level of the second variable.
For example, maybe one drug produces better effects when combined
with a weight-reduction diet than when combined with a sodium-
restricted diet. There may not be a significant effect of that drug when
all diet groups are lumped together but if we look at the effects sepa-
rately for each diet group we may discover an interaction between the
two factors: diet and drug.

The diagrams below illustrate the concept of interaction effects. WR
means weight reduction and SR means sodium (salt) restriction.
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In example 1 drug B is better than drug A in those under weight
reduction but in those under salt restriction drug A is better than drug
B. If we just compared the average for drug A, combining diets, with
the average for drug B, we would have to say there is no difference
between drug A and drug B, but if we look at the two diets separately we
see quite different effects of the two drugs.

In example 2, there is no difference in the two drugs for those who
restrict salt, but there is less effect of drug A than drug B for those in
weight reduction.

In example 3, there is no interaction; there is an equal effect for
both diets: the two lines are parallel; their slopes are the same. Drug B
is better than drug A both for those in weight reduction and salt r e-
striction.

3.27 Example of a Two-Way ANOVA

Next is a table of data from the TAIM study showing the results of a
two-way analysis of variance:

Two-Way ANOVA From TAIM Data

Source DF

ANOVA
sum of
squares

Mean
square F value Probability

Drug group 2 1776.49 888.25 13.68 .0001

Diet group 2 1165.93 582.96 8.98 .0001

Drug × diet 4 214.50  53.63 0.83 .509

Error 773 50,185.46  64.93
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Note that the error mean square here is 64.93 instead of 66.9 when we
did the one-way analysis. That is because we have explained some of
the error variance as being due to diet effects and interaction effects (we
have “taken out” these effects from the error variance). Thus, 64.93
represents the variance due to pure error, or the unexplained variance.
Now we can use the square root of this which is 8.06 as the estimate of
the common standard deviation. We explain the results as follows:
There is a significant effect of drug (p = .0001) and a significant effect
of diet (p = .0001), but no interaction of drug by diet (p = .509).

We have already made the three pairwise comparisons, by t-tests
for the difference between two means among drugs (i.e., placebo vs.
diuretic, placebo vs. beta-blocker, and diuretic vs. beta-blocker). We can
do the same for the three diets. Their mean values are displayed below:

Diet group n
Mean drop in diastolic

blood pressure
Standard
devia tion

Weight reduction
Sodium restriction
Usual diet

263
257
262

13.5
11.5
10.5

8.3
8.3
8.0

(Pooled estimate of s.d. = 8.06)

If we did t-tests, we would find that weight reduction is better than
usual diet (p = .0000), but sodium restriction shows no significant im-
provement over usual diet (p = .16).

Weight reduction when compared with sodium restriction is also
significantly better with p = .005, which is well below the p = .017 r e-
quired by the Bonferroni procedure. (The t for this pairwise compari-
son is 2.83, which is above the critical value of 2.39.)

3.28 Kruskal–Wallis Test to Compare Several Groups

The analysis of variance is valid when the variable of interest is con-
tinuous, comes from a normal distribution, that is, the familiar bell-
shaped curve, and the variances within each of the groups being com-
pared are essentially equal. Often, however, we must deal with situa-
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tions when we want to compare several groups on a variable that does
not meet all of the above conditions. This might be a case where we can
say one person is better than another, but we can't say exactly how
much better. In such a case we would rank people and compare the
groups by using the Kruskal–Wallis test to determine if it is likely that
all the groups come from a common population. This test is analogous
to the one-way analysis of variance but instead of using the original
scores, it uses the rankings of the scores. It is called a non-parametric
test . This test is available in many computer programs, but an example
appears in Appendix C.

3.29 Association and Causation: The Correlation Coefficient

A common class of problems in the accumulation and evaluation of
scientific evidence is the assessment of association of two variables. Is
there an association between poverty and drug addiction? Is emotional
stress associated with cardiovascular disease?

To determine association, we must first quantify both variables.
For instance, emotional stress may be quantified by using an ap-
propriate psychological test of stress or by clearly defining, evaluating,
and rating on a scale the stress factor in an individual's life situation,
whereas hypertension (defined as a blood pressure reading) may be
considered as the particular aspect of cardiovascular disease to be
studied. When variables have been quantified, a measure of association
needs to be calculated to determine the strength of the relationship. One
of the most common measures of association is the correlation coeffi-
cient, r, which is a number derived from the data that can vary between
–1 and +1. (The method of calculation appears in Appendix D.)  When
r = 0 it means there is no association between the two variables. An ex-
ample of this might be the correlation between blood pressure and the
number of hairs on the head. When r = +1, a perfect positive correla-
tion, it means there is a direct relationship between the two variables:
an individual who has a high score on one variable also has a high
score on the other, and the score on one variable can be exactly pre-
dicted from the score on the other variable. This kind of correlation
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exists only in deterministic models, where there is really a functional
relationship. An example might be the correlation between age of a tree
and the number of rings it has. A correlation coefficient of -1 indicates
a perfect inverse relationship, where a high score on one variable
means a low score on the other and where, as in perfect positive corre-
lation, there is no error of measurement. Correlation coefficients be-
tween 0 and +1 and between 0 and -1 indicate varying strengths of as-
sociations.

These correlation coefficients apply when the basic relationship
between the two variables is linear. Consider a group of people for each
of whom we have a measurement of weight against height; we will find
that we can draw a straight line through the points. There is a linear
association between weight and height and the correlation coefficient
would be positive but less than 1.

The diagrams in Figure 3.9 illustrate representations of various
correlation coefficients.

3.30 How High Is High?

The answer to this question depends upon the field of application as
well as on many other factors. Among psychological variables, which
are difficult to measure precisely and are affected by many other vari-
ables, the correlations are generally (though not necessarily) lower
than among biological variables where more accurate measurement is
possible. The following example may give you a feel for the orders of
magnitude. The correlations between verbal aptitude and nonverbal
aptitude, as measured for Philadelphia schoolchildren by standardized
national tests, range from .44 to .71 depending on race and social class
of the groups.13

3.31 Causal Pathways

If we do get a significant correlation, we then ask what situations could
be responsible for it? Figure 3.10 illustrates some possible strucstruc-
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Figure 3.9

tural relationships that may underlie a significant correlation coeffi-
cient, as suggested by Sokal and Rohlf. 14  We consider two variables, W
(weight gain) and B (blood pressure) , and let r WB represent the correla-
tion between them.  Note that only in diagrams (1), (2), and (6) does the
correlation between W and B arise due to a causal relationship between
the two variables. In diagram (1), W entirely determines B; in diagram
(2), W is a partial cause of B; in diagram (6), W is one of several de-
terminants of B. In all of the other structural relationships, the corre-
lation between W and B arises due to common influences on both vari-
ables. Thus, it must be stressed that the existence of a correlation
between two variables does not necessarily imply causation.  Correla-
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tions may arise because one variable is the partial cause of another or
the two correlated variables have a common cause. Other factors, such
as sampling, the variation in the two populations, and so on, affect the
size of the correlation coefficient also. Thus, care must be taken in in-
terpreting these coefficients.

(1)
W B

W = weight gain; B = blood pressure
W entirely determines B
rWB = 1

(2) W

A

K

B

W is one of several determinants of B
A = age; K = kidney function These variables
could also affect blood pressure
rWB is less than 1

(3)
A

B

W

The common cause, age, totally determines
both blood pressure and weight gain
rWB = 1

(4)
K

A

C

B

W

The correlation between W and B is due to a
common cause, A (age), but C (caloric in-
take) and K (kidney function) also determine
W (weight gain) and B (blood pressure re-
spectively
rWB is less than 1

(5) A

G

B

W

Correlation between W and B is due to two
common causes, A (age) and G genetic
factors
rWB is less than 1

(6)

G

A

C

B

W

The correlation between W and B is due to
the direct effect of W (weight gain) on B
(blood pressure) as well as to a common
cause, A (age) which affects both variables;
G (genetic factors) also affect B (blood pres-
sure) and C (caloric intake) affects W
(weight gain)
rWB is less than 1

Figure 3.10
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3.32 Regression

Note that in Figure 3.9 we have drawn lines that seem to best fit the
data points. These are called regression lines. They have the following
form:
Y = a  + bX.  In the top scattergram labeled (a), Y is the dependent vari-
able weight and X, or height, is the independent variable. We say that
weight is a function of height. The quantity a is the intercept. It is
where the line crosses the Y axis. The quantity b is the slope and it is
the rate of change in Y for a unit change in X. If the slope is 0, it
means we have a straight line parallel to the x  axis, as in the illustra-
tion (d). It also means that we cannot predict Y from a knowledge of X
since there is no relationship between Y and X. If we have the situation
shown in scattergrams (b) or (c), we know exactly how Y changes
when X changes and we can perfectly predict Y from a knowledge of X
with no error. In the scattergram (a), we can see that as X increases Y
increases but we can't predict Y perfectly because the points are scat-
tered around the line we have drawn. We can, however, put confidence
limits around our prediction, but first we must determine the form of
the line we should draw through the points. We must estimate the val-
ues for the intercept and slope. This is done by finding the “best-fit
line.”

The line that fits the points best has the following characteristics: if
we take each of the data points and calculate its vertical distance from
the line and then square that distance, the sum of those squared dis-
tances will be smaller than the sum of such squared distances from
any other line we might draw. This is called the least-squares  fit. Con-
sider the data below where Y could be a score on one test and X could
be a score on another test.

Score

Individual X Y

A
B
C
D
E

5
8

15
20
25

7
4
8

10
14
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The calculations to determine the best-fit line are shown in Appen-
dix D. However, most statistical computer packages for personal com-
puters provide a linear regression program that does these calcula-
tions. Figure 3.11 illustrates these points plotted in a scattergram and
shows the least-squares line.

The equation for the line is Y = 2.76 + .40 X. The intercept a  is 2.76
so that the line crosses the y axis at Y = 2.76. The slope is .40. For ex-
ample, we can calculate a predicted Y for X = 10 to get

Y = 2.76 + (.40)(10) = 2.76 + 4 = 6.76

The di’s are distances from the points to the line. It is the sum of
these squared distances that is smaller for this line than it would be for
any other line we might draw.

The correlation coefficient for these data is .89. The square of the
correlation coefficient, r2, can be interpreted as the proportion of the
variance in Y that is explained by X. In our example, .892 = .79; thus

Figure 3.11
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79% of the variation of Y is explainable by the variable X, and 21% is
unaccounted for.

3.33 The Connection Between Linear Regression and the
Correlation Coefficient

The correlation coefficient and the slope of the linear regression line
are related by the formulas

r =  b s
s

,                 b =  r
s
s

x

y

y

x

where sx is the standard deviation of the X variable, sy is the standard
deviation of the Y variable, b is the slope of the line, and r is the corre-
lation coefficient.

3.34 Multiple Linear Regression

When we have two or more independent variables and a continuous
dependent variable, we can use multiple regression analysis. The form
this takes is

Y =  a + b X  +  b X  +  b X  +  . . . +  b Xk k1 1 2 2 3 3

For example, Y may be blood pressure and X1 may be age, X2 may be
weight, X3 may be family history of high blood pressure. We can have
as many variables as appropriate, where the last variable is the k th
variable. The bi’s are regression coefficients. Note that family history of
high blood pressure is not a continuous variable. It can either be yes or
no. We call this a dichotomous variable and we can use it as any other
variable in a regression equation by assigning a number to each of the
two possible answers, usually by making a yes answer = 1 and a no
answer = 0. Statistical computer programs usually include multiple
linear regression.
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An example from the TAIM study follows and is meant only to give
you an idea of how to interpret a multiple regression equation. This
analysis pertains to the group of 89 people who were assigned to a pla-
cebo drug and a weight-reduction regimen. The dependent variable is
change in blood pressure.

The independent variables are shown below:

Variable Coefficient: bi p

Intercept –15.49 .0016

Age .077 .359

Race 1 = Black

0 = Nonblack

4.22 .021

Sex 1 = Male

0 = Female

1.50 .390

Pounds lost .13 .003

Note: Sex is coded as 1 if male and 0 if female; race is coded as 1 if
black and 0 if nonblack; p is used to test if the coefficient is significantly
different from 0. The equation, then, is

change in blood pressure =

–15.49 + .077(age)  + 4.22(race) + 1.5(sex)  + .13(change in weight)

Age is not significant (p = .359), nor is sex (p = .390). However, race is
significant (p = .021), indicating that blacks were more likely than
nonblacks to have a drop in blood pressure while simultaneously con-
trolling for all the other variables in the equation. Pounds lost is also
significant, indicating that the greater the weight loss the greater was
the drop in blood pressure.
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3.35 Summary So Far

Investigation of a scientific issue often requires statistical analysis, es-
pecially where there is variability with respect to the characteristics of
interest. The variability may arise from two sources: the characteristic
may be inherently variable in the population and/or there may be error
of measurement.

In this chapter we have pointed out that in order to evaluate a pro-
gram or a drug, to compare two groups on some characteristic, to con-
duct a scientific investigation of any issue, it is necessary to quantify the
variables.

Variables may be quantified as discrete or as continuous and there
are appropriate statistical techniques that deal with each of these. We
have considered here the chi-square test, confidence intervals, Z-test,
t-test, analysis of variance, correlation, and regression. We have
pointed out that in hypothesis testing we are subject to two kinds of er -
rors: the error of rejecting a hypothesis when in fact it is true, and the
error of accepting a hypothesis when in fact it is false. The aim of a
well-designed study is to minimize the probability of making these types
of errors. Statistics will not substitute for good experimental design, but
it is a necessary tool to evaluate scientific evidence obtained from
well-designed studies.

Philosophically speaking, statistics is a reflection of life in two im-
portant respects: (1) as in life, we can never be certain of anything (but
in statistics we can put a probability figure describing the degree of our
uncertainty), and (2) all is a trade-off—in statist ics, between certainty
and precision, or between two kinds of error; in life, well, fill in your
own trade-offs.
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Chapter 4
MOSTLY ABOUT EPIDEMIOLOGY

Medicine to produce health has to examine disease; and music to
create harmony, must investigate discord.

Plutarch
A.D. 46–120

4.1 The Uses of Epidemiology

Epidemiology may be defined as the study of the distribution of health
and disease in groups of people and the study of the factors that influ-
ence this distribution. Modern epidemiology also encompasses the
evaluation of diagnostic and therapeutic modalities and the delivery of
health care services. There is a progression in the scientific process
(along the dimension of increasing credibility of evidence), from casual
observation, to hypothesis formation, to controlled observation, to ex-
perimental studies. Figure 4.1 is a schematic representation of the uses
of epidemiology. The tools used in this endeavor are in the province of
epidemiology and biostatistics. The techniques used in these disciplines
enable “medical detectives” both to uncover a medical problem, to
evaluate the evidence about its causality or etiology, and to evaluate
therapeutic interventions to combat the problem.

Descriptive epidemiology provides information on the pattern of
diseases, on “who has what and how much of it,” information that is
essential for health care planning and rational allocation of resources.
Such information may often uncover patterns of occurrence suggest-
ing etiologic relationships and can lead to preventive strategies. Such
studies are usually of the cross-sectional type and lead to the formation
of hypotheses that can then be tested in case-control, prospective, and
experimental studies. Clinical trials and other types of controlled stud-
ies serve to evaluate therapeutic modalities and other means of inter -
ventions and thus ultimately determine standards of medical practice,
which in turn have impact on health care planning decisions. In the
following section, we will consider selected epidemiologic concepts.
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USES OF EPIDEMIOLOGY
DESCRIPTIVE: Distribution of

diseases in
population
subgroups
(Cross
sectional
studies)

HEALTH
CARE
PLANNING

EMERGENCE
OF PATTERNS

(suggesting)

ETIOLOGIC: Associations
among
variables,
temporal
relationships
(case-control and
prospective studies)

FORMATION
OF
HYPOTHESES

(suggesting)

EXPERIMENTAL: Testing of
interventions

STANDARDS OF
MEDICAL
PRACTICE

(clinical trials)

Figure 4.1

4.2 Some Epidemiologic Concepts: Mortality Rates

In 1900, the three major causes of death were influenza or pneumo-
nia, tuberculosis, and gastroenteritis. Today the three major causes of
death are heart disease, cancer, and accidents; the fourth is strokes.
Stroke deaths have decreased dramatically over the last few decades
probably due to the improved control of hypertension, one of the pri-
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mary risk factors for stroke. These changing patterns of mortality r e-
flect changing environmental conditions, a shift from acute to chronic
illness, and an aging population subject to degenerative diseases. We
know this from an analysis of rates.

The comparison of defined rates among different subgroups of in-
dividuals may yield clues to the existence of a health problem and may
lead to the specification of conditions under which this identified health
problem is likely to appear and flourish.

In using rates, the following points must be remembered:

(1) A rate is a proportion involving a numerator and a denomina-
tor.

(2) Both the numerator and the denominator must be clearly de-
fined so that you know to which group (denominator) your rate
refers.

(3) The numerator is contained in (is a subset of) the denomina-
tor. This is in contrast to a ratio where the numerator refers to
a different group from the denominator.

Mortality rates pertain to the number of deaths occurring in a par-
ticular population subgroup and often provide one of the first indica-
tions of a health problem. The following definitions are necessary be-
fore we continue our discussion:

The Crude Annual Mortality Rate (or death rate) is:

the total number  of deaths
during a year in the population at risk

the population at risk
(usually taken as the population at midyear)

The Cause-Specific Annual Mortality Rate is:

number of deaths occurring due to a particular cause
during the year in the population at risk

population at risk (all those alive at midyear)
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The Age-Specific Annual Mortality Rate  is:

number of deaths occurring in the given age group
during the year in the population at risk

population at risk
(those in that age group alive at midyear)

A reason for taking the population at midyear as the denominator
is that a population may grow or shrink during the year in question
and the midyear population is an estimate of the average number dur -
ing the year. One can, however, speak of death rates over a five- year
period rather than a one-year period, and one can define the popula-
tion at risk as all those alive at the beginning of the period.

4.3 Age-Adjusted Rates

When comparing death rates between two populations, the age compo-
sition of the populations must be taken into account. Since older people
have a higher number of deaths per 1,000 people, if a population is
heavily weighted by older people, the crude mortality rate would be
higher than in a younger population and a comparison between the
two groups might just reflect the age discrepancy rather than an intrin-
sic difference in mortality experience. One way to deal with this prob-
lem is to compare age-specific death rates, death rates specific to a par-
ticular age group. Another way that is useful when an overall
summary figure is required is to use age-adjusted  rates. These are
rates adjusted to what they would be if the two populations being com-
pared had the same age distributions as some arbitrarily selected stan-
dard population.

For example, the table below shows the crude and age-adjusted
mortality rates for the United States at five time periods.15,7 The ad-
justment is made to the age distribution of the population in 1940 as
well as the age distribution of the population in 2000. Thus, we see that
in 1991 the age-adjusted rate was 5.1/1000 when adjusted to 1940 stan-
dard, but the crude mortality rate was 8.6/1000. This means that if in
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1991 the age distribution of the population were the same as it was in
1940, then the death rate would have been only 5.1/1000 people. The
crude and age-adjusted rates for 1940 are the same because the 1940
population serves as the “standard” population whose age distribution
is used as the basis for adjustment.

When adjusted to the year 2000 standard, the age-adjusted rate was
9.3. If in 1991 the age distribution were the same as in 2000, then the
death rate would have been 9.3/1000 people. So age-adjusted rates de-
pend on the standard population being used for the adjustment. Note
that the age-adjusted rate based on the population in year 2000 is
higher than the age-adjusted rate based on the population in 1940; this
is because the population is older in year 2000.

Year
Crude Mortality Rate

per 1,000 People
Age-Adjusted Rate (to

Population in 1940)

Age-Adjusted Rate
(to population in

2000)

1940

1960

1980

1991

2001

10.8

9.5

8.8

8.6

8.5

10.8

7.6

5.9

5.1

not computed after
1998

17.9

13.4

10.4

9.3

8.6

Although both crude and age-adjusted rates have decreased from
1940, the decrease in the age-adjusted rate is much greater. The per-
cent change in crude mortality between 1940 and 1991 was (10.8 –
8.6)/10.8 = 20.4%, whereas the percent change in the age-adjusted rate
was (10.8 – 5.1)/10.8 = .528 or 52.8%.

The reason for this is that the population is growing older. For in-
stance the proportion of persons 65 years and over doubled between
1920 and 1960, rising from 4.8% of the population in 1920 to 9.6% in
1969. After 1998, the National Center for Health Statistics used the
population in 2000 as the standard population against which adjust-
ments were made. The crude rate and the age-adjusted death rate in
the year 2001 are similar, and that is because the age distribution in
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2001 is similar to the age distribution in 2000 so age-adjustment
doesn’t really change the mortality rate much.

The age-adjusted rates are fictitious numbers—they do not tell you
how many people actually died per 1,000, but how many would have
died if the age compositions were the same in the two populations.
However, they are appropriate for comparison purposes.  Methods to
perform age-adjustment are described in Appendix E.

4.4 Incidence and Prevalence Rates

The prevalence rate and the incidence rate are two measures of mor -
bidity (illness).

Prevalence rate  of a disease is defined as

Number of persons with a disease

Total number of persons in population
at risk at a particular point in time

(This is also known as point prevalence , but more generally referred to
just as “prevalence.”) For example, the prevalence of hypertension in
1973 among black males, ages 30–69, defined as a diastolic blood pres-
sure (DBP) of 95 mm Hg or more at a blood pressure screening pro-
gram conducted by the Hypertension Detection and Follow-Up Pro-
gram (HDFP),16 was calculated to be:

4 268 95

15 190 30 69

,

,

with DBP mmHg

black men aged screened

>
−

x 100 = 28.1 per 100

Several points are to be noted about this definition:
(1) The risk group (denominator) is clearly defined as black men,

ages 30–69.
(2) The point in time is specified as time of screening.
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(3) The definition of the disease is clearly specified as a diastolic
blood pressure of 95 mm Hg or greater. (This may include
people who are treated for the disease but whose pressure is
still high and those who are untreated.)

(4) The numerator is the subset of individuals in the reference
group (denominator) who satisfy the definition of the disease.

The incidence rate is defined as:

Number of new cases of a disease per unit of time

Total number at risk in beginning of this time period

For example, studies have found that the ten-year incidence of a major
coronary event (such as heart attack) among white men, ages 30–59,
with diastolic blood pressure 105 mm Hg or above at the time they were
first seen, was found to be 183 per 1,000.17 This means that among
1,000 white men, ages 30–59, who had diastolic blood pressure above
105 mm Hg at the beginning of the ten-year period of observation, 183
of them had a major coronary event (heart attack or sudden death)
during the next ten years. Among white men with diastolic blood pres-
sure of <75 mm Hg, the ten-year incidence of a coronary event was
found to be 55/1,000. Thus comparison of these two incidence rates,
183/1,000 for those with high blood pressure versus 55/1,000 for those
with low blood pressure, may lead to the inference that elevated blood
pressure is a risk factor for coronary disease.

Often one may hear the word “incidence” used when what is really
meant is prevalence. You should beware of such incorrect usage. For
example, you might hear or even read in a medical journal that the in-
cidence of diabetes in 1973 was 42.6 per 1,000 individuals, ages 45–64,
when what is really meant is that the prevalence was 42.6/1,000. The
thing to remember is that prevalence refers to the existence of a disease
at a specific period in time, whereas incidence refers to new cases  of a
disease developing within a specified period of time.

Note that mortality rate is an incidence rate, whereas morbidity may
be expressed as an incidence or prevalence rate. In a chronic disease
the prevalence rate is greater than the incidence rate because preva-
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lence includes both new cases and existing cases that may have first
occurred a long time ago, but the afflicted patients continued to live
with the condition. For a disease that is either rapidly fatal or quickly
cured, incidence and prevalence may be similar. Prevalence can be es-
tablished by doing a survey or a screening of a target population and
counting the cases of disease existing at the time of the survey. This is a
cross-sectional study. Incidence figures are harder to obtain than prev-
alence figures since to ascertain incidence one must identify a group of
people free of the disease in question (known as a cohort), observe
them over a period of time, and determine how many develop the dis-
ease over that time period. The implementation of such a process is dif-
ficult and costly.

4.5 Standardized Mortality Ratio

The standardized mortality ratio (SMR) is the ratio of the number of
deaths observed to the number of deaths expected. The number ex-
pected for a particular age group for instance, is often obtained from
population statistics.

SMR
observed deaths

ected deaths
=

exp

4.6 Person-Years of Observation

Occasionally one sees a rate presented as some number of events per
person-years of observation, rather than per number of individuals ob-
served during a specified period of time. Per person-years (or months)
is useful as a unit of measurement when people are observed for dif-
ferent lengths of time. Suppose you are observing cohorts of people
free of heart disease to determine whether the incidence of heart dis-
ease is greater for smokers than for those who quit. Quitters need to be
defined, for example, as those who quit more than five years prior to
the start of observation. One could define quitters differently and get
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different results, so it is important to specify the definition. Other con-
siderations include controlling for the length of time smoked, which
would be a function of age at the start of smoking and age at the start
of the observation period, the number of cigarettes smoked, and so
forth. But for simplicity, we will assume everyone among the smokers
has smoked an equal amount and everyone among the quitters has
smoked an equal amount prior to quitting.

We can express the incidence rate of heart disease per some unit of
time, say 10 years, as the number who developed the disease during
that time, divided by the number of people we observed (number at
risk). However, suppose we didn't observe everyone for the same length
of time. This could occur because some people moved or died of other
causes or were enrolled in the study at different times or for other rea-
sons. In such a case we could use as our denominator the number of
person-years of observation.

For example, if individual 1 was enrolled at time 0 and was ob-
served for 4 years, then lost to follow-up, he would have contributed 4
person-years of observation. Ten such individuals would contribute 40
person-years of observation. Another individual observed for 8 years
would have contributed 8 person-years of observation and 10 such in-
dividuals would contribute 80 person-years of observation for a total of
120 person-years. If six cases of heart disease developed among those
observed, the rate would be 6 per 120 person-years, rather than 6/10
individuals observed. Note that if the denominator is given as per-
son-years, you don't know if it pertains to 120 people each observed for
one year, or 12 people each observed for 10 years or some combina-
tion. Another problem with this method of expressing rates is that it
reflects the average experience over the time span, but it may be that the
rate of heart disease is the same for smokers as for quitters within the
first 3 years and the rates begin to separate after that. In any case,
various statistical methods are available for use with person-year
analysis. An excellent explanation of this topic is given in the book An
Introduction to Epidemiologic Methods, by Harold A. Kahn.
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4.7 Dependent and Independent Variables

In research studies we want to quantify the relationship between one
set of variables, which we may think of as predictors or determinants,
and some outcome or criterion variable in which we are interested.
This outcome variable, which it is our objective to explain, is the de-
pendent variable.

A dependent variable  is a factor whose value depends on the level of
another factor, which is termed an independent variable . In the exam-
ple of cigarette smoking and lung cancer mortality, duration and/or
number of cigarettes smoked are independent variables upon which the
lung cancer mortality depends (thus, lung cancer mortality is the de-
pendent variable).

4.8 Types of Studies

In Section 1.4 we described different kinds of study designs, in the
context of our discussion of the scientific method and of how we know
what we know. These were observational studies, which may be cross-
sectional, case-control, or prospective, and experimental studies, which
are clinical trials. In the following sections we will consider the types of
inferences that can be derived from data obtained from these different
designs.

The objective is to assess the relationship between some factor of
interest (the independent variable), which we will sometimes call expo-
sure, and an outcome variable (the dependent variable).

The observational studies are distinguished by the point in time
when measurements are made on the dependent and independent vari-
ables,  as illustrated below. In cross-sectional studies, both the depend-
ent and independent (outcome and exposure) variables are measured
at the same time, in the present. In case-control studies, the outcome is
measured now and exposure is estimated from the past. In prospective
studies, exposure (the independent variable) is measured now and the
outcome is measured in the future. In the next section we will discuss
the different inferences to be made from cross-sectional versus pro-
spective studies.
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Time of Measurement

Past Present Future

Cross-Sectional: exposure
outcome

Case-Control: exposure outcome

Prospective: exposure outcome

4.9 Cross-Sectional Versus Longitudinal Looks at Data

Prospective studies are sometimes also known as longitudinal studies,
since people are followed longitudinally, over time. Examination of
longitudinal data may lead to quite different inferences than those to be
obtained from cross-sectional looks at data. For example, consider age
and blood pressure.

Cross-sectional studies have repeatedly shown that the average
systolic blood pressure is higher in each successive ten-year age group
while diastolic pressure increases for age groups up to age 50 and then
reaches a plateau. One cannot, from these types of studies, say that
blood pressure rises with age because the pressures measured for 30-
year-old men, for example, were not obtained on the same individuals
ten years later when they were 40, but were obtained for a different set
of 40-year-olds. To determine the effect of age on blood pressure we
would need to take a longitudinal or prospective look at the same indi-
viduals as they get older. One interpretation of the curve observed for
diastolic blood pressure, for instance, might be that individuals over 60
who had very high diastolic pressures died off, leaving only those indi-
viduals with lower pressure alive long enough to be included in the
sample of those having their blood pressure measured in the
cross-sectional look.

The diagrams in Figure 4.2 illustrate the possible impact of a “co-
hort effect,” a cross-sectional view and a longitudinal view of the same
data. (Letters indicate groups of individuals examined in a particular
year.)
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CROSS SECTIONAL DATA

45 A B C D E

40 B C D E F Cohort or
Longit udinal Data

Age of Individuals
Examines

35 C D E F G

30 D E F G H 30 Year Olds in
Successive Years

25 E F G H I

1955 1960 1965 1970 1975

Year of examination

Figure 4.2

If you take the blood pressure of all groups in 1965 and compare
group F to group D, you will have a cross-sectional comparison of 30-
year-olds with 40-year-olds at a given point in time. If you compare
group F in 1965 with group F (same individuals) in 1975, you will
have a longitudinal comparison. If you compare group F in 1965 with
group H in 1975, you will have a comparison of blood pressures of 30-
year-olds at different points in time (a horizontal look).

These comparisons can lead to quite different conclusions, as is
shown by the schematic examples in Figure 4.3 using fictitious
numbers to represent average diastolic blood pressure.

F = D = F =
40 Year Olds

30 Year Olds

D = 110

F = 90

F = 90 D = 90

F = 90

110 110
F
90

110

1965 1975 1965 1975 1965 1975

Cross-Sec tional: D – F = 110 – 90 = 20, 90 – 90 = 0, 110 – 90 = 20,
1965 1965

Longi tudinal:
F – F = 90 – 90 = 0, 110 – 90 = 20, 10 – 90 = 20,
1975 1965

Hori zontal
F – D = 90 – 110 = –20, 110 – 90 = 20, 10 – 110 = 0
1975 1965

Figure  4.3
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In example (1) measurements in 1965 indicate that average dia-
stolic blood pressure for 30-year-olds (group F) was 90 mm Hg and
for 40-year-olds (group D), it was 110 mm Hg. Looking at group F ten
years later, when they were 40-year-olds, indicates their mean diastolic
blood pressure was 90 mm Hg. The following calculations result:

cross-sectional look: D – F = 110 – 90 = 20
1965 1965

conclusion: 40-year-olds have higher blood pressure than
30-year-olds (by 20 mm Hg).

longitudinal look: F – F = 90 – 90 = 0
1975 1965

conclusion: Blood pressure does not rise with age.

horizontal look: F – D = 90 – 110 = –20
(cohort comparisons) 1975 1965

conclusion: 40-year-olds in 1975 have lower blood pres-
sure than 40-year-olds did in 1965.

A possible interpretation :  Blood pressure does not rise with age, but
different environmental forces were operating for the F cohort, than
for the D cohort.

In example (2) we have

cross-sectional look: D – F = 90 – 90 = 0 mm Hg
1965 1965

conclusion: From cross-sectional data, we conclude that
blood pressure is not higher with older age.
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longitudinal look: F  – F = 110 – 90 = 20
1975 1965

conclusion: From longitudinal data we conclude that
blood pressure goes up with age.

horizontal look: F – D = 110 – 90 = 20
1975 1965

conclusion: 40-year-olds in 1975 have higher blood pres-
sure than 40-year-olds in 1965.

A possible interpretation :  Blood pressure does rise with age and differ-
ent environmental factors operated on the F cohort than on the D co-
hort.

In example (3) we have

cross-sectional look: D – F = 110 – 90 = 20
1965  1965

conclusion: Cross-sectionally, there was an increase in
blood pressure for 40-year-olds over that for
30-year-olds.

longitudinal look: F – F = 110 – 90 = 20
1975 1965

conclusion: Longitudinally it is seen that blood pressure
increases with increasing age.

horizontal look: F – D = 110 – 110 = 0
1975 1965
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conclusion: There was no change in blood pressure
among 40-year-olds over the ten-year period.

A possible interpretation :  Blood pressure does go up with age (sup-
ported by both longitudinal and cross-sectional data) and environ-
mental factors affect both cohorts similarly.

4.10 Measures of Relative Risk:
Inferences From Prospective Studies:
the Framingham Study

In epidemiologic studies we are often interested in knowing how much
more likely an individual is to develop a disease if he or she is exposed
to a particular factor than the individual who is not so exposed. A sim-
ple measure of such likelihood is called relative risk (RR). It is the ratio
of two incidence rates: the rate of development of the disease for people
with the exposure factor, divided by the rate of development of the dis-
ease for people without the exposure factor . Suppose we wish to deter-
mine the effect of high blood pressure (hypertension) on the develop-
ment of cardiovascular disease (CVD). To obtain the relative risk we
need to calculate the incidence rates. We can use the data from a classic
prospective study, the Framingham Heart Study.18

This was a pioneering prospective epidemiologic study of a popu-
lation sample in the small town of Framingham, Massachusetts. Be-
ginning in 1948 a cohort of people was selected to be followed up bien-
nially. The term cohort refers to a group of individuals followed longi-
tudinally over a period of time. A birth cohort, for example, would be
the population of individuals born in a given year. The Framingham
cohort was a sample of people chosen at the beginning of the study pe-
riod and included men and women aged 30 to 62 years at the start of
the study. These individuals were observed over a 20-year period, and
morbidity and mortality associated with cardiovascular disease were
determined. A standardized hospital record and death certificate were
obtained, clinic examination was repeated at two-year intervals, and the
major concern of the Framingham study has been to evaluate the rela-
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tionship of characteristics determined in well persons to the subsequent
development of disease.

Through this study “risk factors” for cardiovascular disease were
identified. The risk factors are antecedent physiologic characteristics or
dietary and living habits, whose presence increases the individual's
probability of developing cardiovascular disease at some future time.
Among the most important predictive factors identified in the
Framingham study were elevated blood pressure, elevated serum cho-
lesterol, and cigarette smoking. Elevated blood glucose and abnormal
resting electrocardiogram findings are also predictive of future cardio-
vascular disease.

Relative risk can be determined by the following calculation:

incidence rate of cardiovascular disease (new cases)
over a specified period of time among people free

of CVD at beginning of the study period who have
the risk factor in question (e.g., high blood pressure)

incidence rate of CVD in the given time period among
people free of CVD initially, who do not have the risk

factor in question (normal blood pressure)

From the Framingham data we calculate for men in the study the

RR of CVD within
18 years after first

exam
=

353.2/10,000 personsat risk

with definite hypertension

123.9/10,000 personsat risk

with no hypertension

353 2

123 9
2 85

.

.
.=

This means that a man with definite hypertension is 2.85 times
more likely to develop CVD in an 18-year period than a man who does
not have hypertension. For women the relative risk is
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187 9

57 3
3 28

.

.
.=

This means that hypertension carries a somewhat greater relative risk
for women. But note that the absolute  risk for persons with definite
hypertension (i.e., the incidence of CVD) is greater for men than for
women, being 353.2 per 10,000 men versus 187.9 per 10,000 women.

The incidence rates given above have been age-adjusted. Age ad-
justment is discussed in Section 4.3. Often one may want to adjust for
other variables such as smoking status, diabetes, cholesterol levels, and
other factors that may also be related to outcome. This may be accom-
plished by multiple logistic regression analysis or by Cox proportional
hazards analysis, which are described in Sections 4.16 and 4.18, r e-
spectively, but first we will describe how relative risk can be calculated
from prospective studies or estimated from case-control studies.

4.11 Calculation of Relative Risk from Prospective Studies

Relative risk can be determined directly from prospective studies by
constructing a 2 × 2 table as follows:19

DISEASE
(developing in the specified period)

Yes No

PRESENT
(high blood
pressure)

a = 90 b = 403
a + b = 493

(persons with
factor)

RISK
FACTOR

(determined
at be-

ginning of
study peri-

od)

ABSENT
(normal

blood pres-
sure)

c = 70 d = 1201
c + d = 1271

(persons without
factor)
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Relative risk is

incidenceof disease among those with high BP

incidenceof disease among those with normal BP
=

a a b

c c d

/( )

/( )

/

/
.

+
+

= =90 493

70 1271
3 31

Relative risk, or hazard ratio, can be calculated from Cox proportional
hazards regression models (which allow for adjustment for other vari-
ables) as described in Section 4.19.

4.12 Odds Ratio: Estimate of Relative Risk from
Case-Control Studies

A case-control study is one in which the investigator seeks to establish
an association between the presence of a characteristic ( a risk factor)
and the occurrence of a disease by starting out with a sample of dis-
eased persons and a control group of nondiseased persons and by
noting the presence or absence of the characteristic in each of these two
groups.  It can be illustrated by constructing a 2 × 2 table as follows:

DISEASE

PRESENT ABSENT

PRESENT a b
RISK

FACTOR
ABSENT c d

a + c
(number of persons

with disease)

b + d
(number of persons

without disease)

The objective is to determine if the proportion of persons with the
disease who have the factor is greater than the proportion of persons
without the disease who have the factor. In other words, it is desired to
know whether a /(a + c) is greater than b/(b + d).
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Case-control studies are often referred to as retrospective studies
because the investigator must gather data on the independent variables
retrospectively. The dependent variable—the presence of disease—is
obtained at time of sampling, in contrast to prospective studies where
the independent variables are measured at time of sampling and the
dependent variable is measured at some future time (i.e., when the dis-
ease develops). The real distinction between case-control or retrospec-
tive studies and prospective studies has to do with selecting individuals
for the study—those with and without the disease in case-
control/retrospective studies, and those with and without the factor of
interest in prospective studies.

Since in prospective studies we sample the people with the charac-
teristic of interest and the people without the characteristic, we can ob-
tain the relative risk directly by calculating the incidence rates of disease
in these two groups. In case-control studies, however, we sample pa-
tients with and without the disease, and note the presence or absence of
the characteristic of interest in these two groups; we do not have a di-
rect measure of incidence of disease. Nevertheless, making certain as-
sumptions, we can make some approximations to what the relative risk
would be if we could measure incidence rates through a prospective
study. These approximations hold best for diseases of low incidence.

To estimate relative risk from case-control studies note that

a a b

c c d

a c d

c a b

/

/

( )

( )

( )

( )

+
+

= +
+

Now assume that since the disease is not all that common, c is negligi-
ble in relation to d (in other words among people without the risk factor
there aren't all that many who will get the disease, relative to the num-
ber of people who will not get it). Assume also that, in the population, a
is negligible relative to b, since even among people with the risk factor
not all that many will get the disease in comparison to the number who
won't get it. Then the terms in the parentheses become d in the nu-
merator and b  in the denominator so that
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a c d

c a b
reduces to OR

ad

bc

( )

( )

+
+

=

This is known as the odds ratio (OR) and is a good estimate of relative
risk when the disease is rare.

An example of how the odds ratio is calculated is shown below. I n
a case-control study of lung cancer the table below was obtained.20 Note
that we are not sampling smokers and nonsmokers here. Rather we
are sampling those with and without the disease. So although in the
population at large a is small relative to b, in this sample it is not so.

Patients with Lung
Cancer

Matched Controls
with Other Diseases

Smokers of 15–24
cigarettes daily 475 a 431 b

Nonsmokers 7 c 61 d

(persons with
 disease)

(persons without
disease)

The odds ratio, as an estimate of the relative risk of developing lung
cancer for people who smoke 15–24 cigarettes a day, compared with
nonsmokers is

Odds ratio estimate of relative risk=
×
×

= =
475 61

431 7
9 60.

This means that smokers of 15–24 cigarettes daily are 9.6 times more
likely to get lung cancer than are nonsmokers.

One more thing about the odds ratio: it is the ratio of odds of lung
cancer for those who smoke 15–24 cigarettes a day, relative to odds of
lung cancer for those who don't smoke. In the example above, we get
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for smo s odds of lung cancer areker :
475

431

for nonsmo s odds of lung cancer areker :
7

61

ratio of odds = 475 431

7 61

/

/

So the point is, the odds ratio is the odds ratio, whether the disease is
rare or not. It is always the ratio of odds of disease for those with the
exposure versus the odds of disease for those without the exposure. But
when the disease is rare, it is also a good estimate of the relative risk.
We can also put confidence limits on the odds ratio, shown in Appen-
dix F. Odds ratios can be calculated from logistic regression (which
allow for adjustment for other variables) as described in Section 4.17.

4.13 Attributable Risk

Attributable risk (AR) is:
risk in exposed—risk in unexposed individuals.

Population attributable risk (PAR) is:
AR x risk factor prevalence

While relative risk pertains to the risk of a disease in exposed per-
sons relative to the risk in the unexposed, the attributable risk pertains
to the difference in absolute risk of the exposed compared to the unex-
posed persons. It may tell us how much excess risk there is due to the
exposure in the exposed. In the example in Section 4.11, the 10 year
risk among those with high blood pressure was 90/493 = 0.183, (or 183
per 1000 people with high blood pressure) while in those with normal
blood pressure it was 70/1271 = 0.055 (or 55 per 1000 with normal
pressure).
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Thus the attributable risk in those exposed (i.e. with high blood
pressure) is 0.183-0.055 = 0.128 (128 per 1000).  In other words, heart
disease events in 128 of the 183 people per 1000 with high blood pres-
sure can be attr ibuted to the high blood pressure. We can also express
this excess as a percentage of the risk in the exposed that is attributable
to the exposure:

128 1000

183 1000
128 70 70

/

/
. %= = or

BUT, we must be very careful about such attribution—it is only valid
when we can assume the exposure is causes the disease (after taking
into account confounding and other sources of bias).

Population attributable risk (PAR) is a useful measure when we
want to see how we could reduce morbidity or mortality by eliminating
a risk factor. It depends on the prevalence of the risk factor in the
population as noted above. Here is an example from the Women’s
Health Initiative (described in more detail in Chapter 6). It was found
in a clinical trial that postmenopausal women who were taking estro-
gen plus progestin had an annualized rate of coronary heart disease of
39 per 10,000 compared to a rate of 33 per 10,000 for women taking
placebo.21

Thus:

AR = − =39 33
10 000

0006
,

.

or 6 excess coronary heart disease events per 10,000 women taking this
preparation, per year. 

Since approximately 6,000,000 women were taking that hormone
preparation at the time (exposed), then .0007 x 6,000,000 = 3600 coro-
nary heart disease events per year could be attributed to taking estrogen
plus progestin.

The prevalence of use of estrogen plus progestin estimated from
the same study when it was first begun, was about 18%. If we use this
estimate,
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PAR =  AR x prevalence of risk factor = .0006 x .18 = .000108;

Thus, if use of estrogen plus progestin were eliminated there would
be 10.8 per 100,000 postmenopausal women who had fewer coronary
heart disease events.

4.14 Response Bias

There are many different types of bias that might lead you to either un-
derestimate or overestimate the size of a relative risk of odds ratio, and
it is important to try to anticipate potential sources of bias and avoid
them. The illustration on the next page shows the impact of one kind of
possible bias: ascertainment or response bias.

Assume that you have the following situation. Of 100 people ex-
posed to a risk factor, 20% develop the disease and of a 100 people un-
exposed, 16% develop the disease, yielding a relative risk of 1.25, as
shown in the illustration.

Now imagine that only 60% of the exposed respond to follow-up, or
are ascertained as having or not having the disease, a 60% response
rate among the exposed . Assume further that all of the ones who don't
respond happen to be among the ones who don't  develop disease. The
rela tive risk would be calculated as 2.06.

Now imagine that only 60% of the nonexposed reply, a 60% re-
sponse rate among the nonexposed, and all of the nonexposed who
don't respond happen to be among the ones who don't have the dis-
ease. Now the relative risk estimate is 0.75.

To summarize, you can get conflicting estimates of the relative risk
if you have differential response rates. Therefore, it is very important to
get as complete a response or ascertainment as possible. The tables
showing these calculations follow.



110 Biostatistics and Epidemiology: A Primer for Health Professionals

FULL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

100%

80

100

E

X

P

O

S

U

R

E

–
100%

16

100%

84

100

36 164 200

RR = = =20 100

16 100

20

16
1 25

/

/

.

.
.

DIFFERENTIAL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

50%

40

60
(response

rate =
60%)

E

X

P

O

S

U

R

E

–
100%

16

100%

84

100

36 124 160

RR = = =20 60

16 100

33

16
2 06

/

/

.

.
.



Mostly About Epidemiology 111

DIFFERENTIAL RESPONSE RATE

D I S E A S E

+ –

+
R = 100%

20

100%

40

100

E

X

P

O

S

U

R

E

–
100%

16

52%

84

60
(response

rate =
60%)

36 124 160

RR = = =20 100

16 60

20

266
75

/

/

.

.
.

4.15 Confounding Variables

A confounding variable  is one that is closely associated with both the
independent variable and the outcome of interest in those unexposed.
For example, a confounding variable in studies of coffee and heart dis-
ease may be smoking. Since some coffee drinkers are also smokers, if
a study found a relationship between coffee drinking (the independent
variable) and development of heart disease (the dependent variable), it
could really mean that it is the smoking that causes heart disease,
rather than the coffee. In this example, smoking is the confounding
variable.

If both the confounding variable and the independent variable of
interest are closely associated with the dependent variable, then the ob-
served relationship between the independent and dependent variables
may really be a reflection of the true relationship between the con-
founding variable and the dependent variable. An intuitive way to look
at this is to imagine that if a confounding variable were perfectly asso-
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ciated with an independent variable, it could be substituted for it. It is
important to account or adjust for confounding variables in the design
and statistical analysis of studies in order to avoid wrong inferences.

There are several approaches to dealing with potential confound-
ers. One approach is to deal with it in the study design by matching, for
example, as described in Section 4.16 below; another way of controlling
for confounding variables is in the data analysis phase, by using multi-
variate analysis, as described in Sections 4.17, 4.18 and 4.20 below. An
excellent discussion is found in Modern Epidemiology  by Kenneth J.
Rothman and Sander Greenland.

4.16 Matching

One approach to dealing with potential confounders is to match sub-
jects in the two groups on the confounding variable. In the example
discussed above concerning studies of coffee and heart disease, we
might match subjects on their smoking history, since smoking may be
a confounder of the relationship between coffee and heart disease.
Whenever we enrolled a coffee drinker into the study, we would deter-
mine if that person was a smoker. If the patient was a smoker, the next
patient who would be enrolled who was not a coffee drinker (i.e., a
member of the comparison group), would also have to be a smoker.
For each coffee-drinking nonsmoker, a non–coffee-drinking non-
smoker would be enrolled. In this way we would have the same num-
ber of smokers in the two groups. This is known as one-to-one
matching. There are other ways to match and these are discussed more
fully in the Suggested Readings section, especially in Statistical Meth-
ods for Comparative Studies by Anderson et al. and in Causal Rela-
tionships in Medicine by J. Mark Elwood.

In case-control studies finding an appropriate comparison group
may be difficult. For example, suppose an investigator is studying the
effect of coffee on pancreatic cancer. The investigator chooses as con-
trols, patients in the hospital at the same time and in the same ward as
the cases, but with a diagnosis other than cancer. It is possible that pa-
tients hospitalized for gastrointestinal problems other than cancer
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might have voluntarily given up coffee drinking because it bothered
their stomachs. In such a situation, the coffee drinking habits of the
two groups might be similar and the investigator might not find a
greater association of coffee drinking with cases than with controls. A
more appropriate group might be patients in a different ward, say an
orthopedic ward. But here one would have to be careful to match on
age, since orthopedic patients may be younger than the other cases if
the hospital happens to be in a ski area, for example, where reckless
skiing leads to broken legs, or they may be substantially older than the
other cases if there are many patients with hip replacements due to falls
in the elderly, or osteoarthritis.

It needs to be pointed out that the factor that is matched cannot be
evaluated in terms of its relationship to outcome. Thus, if we are com-
paring two groups of women for the effect of vitamin A intake on cervi-
cal cancer and we do a case-control study in which we enroll cases of
cervical cancer and controls matched on age, we will not be able to say
from this study whether age is related to cervical cancer. This is be-
cause we have ensured that the age distributions are the same in both
the case and control groups by matching on age, so obviously we will
not be able to find differences in age between the groups.

Some statisticians believe that matching is often done unnecessarily
and that if you have a large enough study, simple randomization or
stratified randomization is adequate to ensure a balanced distribution
of confounding factors. Furthermore, multivariate analysis methods,
such as logistic regression or proportional hazards models, provide
another, usually better, way to control for confounders. A good discus-
sion of matching can be found in the book Methods in Observational
Epidemiology , by Kelsey, Thompson, and Evans.

4.17 Multiple Logistic Regression

Multiple logistic regression analysis is used to calculate the probability
of an event happening as a function of several independent variables. 
It is useful in controlling for confounders when examining the rela-
tionship between an independent variable and the occurrence of an
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outcome (e.g., such as heart attack) within a specified period of time.
The equation takes the form of

P event
e k

( ) =
+ −

1

1

where k C C X C X C X C Xm m= + + + + +0 1 1 2 2 3 3 ...

Each Xi  is a particular independent variable and the corresponding
coefficients, C's, are calculated from the data obtained in the study. For
example, let us take the Framingham data for the probability of a man
developing cardiovascular disease within 8 years. Cardiovascular dis-
ease (CVD) was defined as coronary heart disease, brain infarction,
intermittent claudication, or congestive heart failure.

P(CVD) =

1

1
19 77 37 002 2 026 016 558 1 053 602 00036

+ − − + − + + + + + − ×
e

age age chl SBP SM LVH Gl chl age[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]. . . . . . . . .

where chl = serum cholesterol,
SBP = systolic blood pressure,
SM = 1 if yes for smoking, 0 if no,

LVH = left ventricular hypertrophy, 1 if yes, 0 if no,
Gl = glucose intolerance, 1 if yes, 0 if no.

For example, suppose we consider a 50-year-old male whose choles-
terol is 200, systolic blood pressure is 160, who smokes, has no LVH,
and no glucose intolerance. When we multiply the coefficients by this
individual's values on the independent variables and do the necessary
calculations we come up with a probability of .17. This means that this
individual has 17 chances in a 100 of developing some form of cardio-
vascular disease within the next 8 years.

The coefficients from a multiple logistic regression analysis can be
used to calculate the odds ratio for one factor while controlling for all
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the other factors. The way to do this is to take the natural log e raised to
the coefficient for the variable of interest, if the variable is a dichoto-
mous one (i.e., coded as 1 or 0). For example, the odds of cardiovas-
cular disease for smokers relative to nonsmokers among males, while
controlling for age, cholesterol, systolic blood pressure, left ventricular
hypertrophy, and glucose intolerance is e.558  = 1.75. This means that a
person who smokes has 1.75 times higher risk of getting CVD (within
8 years) than the one who doesn't smoke if these two individuals are
equal with respect to the other variables in the equation. This is
equivalent to saying that the smoker's risk is 75% higher than the non-
smoker’s.

If we want to compare the odds of someone with a systolic blood
pressure of 200 versus someone with systolic blood pressure of 120, all
other factors being equal, we calculate it as follows:

OR e e e= = = =−β( ) . ( ) . .200 120 016 80 1 28 3 6

The man with systolic blood pressure of 200 mm Hg is 3.6 times more
likely to develop disease than the one with pressure of 120. (Of course,
this would imply that someone with systolic blood pressure of 260
would also be 3.6 times more likely to develop CVD than one with pres-
sure of 180. If the assumption of a linear increase in risk didn't hold,
then the prediction would be incorrect.)

Logistic regression can also be used for case-control studies. I n
this case raising e to the coefficient of the variable of interest also gives
us the odds ratio, but we cannot use the equation to predict the prob-
ability of an event, since we have sampled from cases and controls, not
from a general population of interest.

Multiple logistic regression analysis has become widely used largely
due to the advent of high-speed computers, since calculating the coeffi-
cients requires a great deal of computer power. Statistical packages are
available for personal computers.

Multiple logistic regression is appropriate when the dependent var-
iable (outcome) is dichotomous (i.e., can be coded as 1 = event, 0 = no
event), and when the question deals with the occurrence of the event of
interest within a specified period time and the people are all followed for
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that length of time. However, when follow-up time for people in the
study differs, then survival analysis should be used, as described in
sections 4.19 and 4.20.

4.18 Confounding By Indication

One type of confounding that can occur in observational studies when
you are looking at the effects of drug treatment on future events, is
confounding by indication. For example suppose you want to compare
the effects on heart disease of different drugs for high blood pressure.
You determine what antihypertensive drugs study participants are tak-
ing at a baseline examination and then you follow them forward in
time to see who develops heart disease. The problem may be that the
reason people were taking different drugs at baseline was that they had
different indications for them and the doctors prescribed medications
appropriate to those indications. Thus people with kidney disease may
have been prescribed a different drug to control high blood pressure
than those with angina, or than those with no other medical condi-
tions, and each of those indications may be differently related to the
outcome of heart disease. Only a clinical trial, where the patients are
randomly assigned to each drug treatment, can truly answer the ques-
tion about different effects of the drugs.

However, there are ways to minimize the confounding by indication
in observational studies; one way is to exclude from the analysis people
who have angina or kidney disease in the above example. Another
method gaining in use is propensity analysis.22 The general idea is that
you predict who is likely to be taking the drug from the independent
variables you have measured and calculate an index of “propensity”
for taking the drug. That propensity score is then entered as an inde-
pendent variable in your final multivariate equation, along with a sub-
set of the variables that you are controlling for. Each person’s data
then, include the values of the covariates and his/her propensity score.

For example in the hypertension example, if we are looking to see
whether a calcium channel blocker is associated with mortality, we
want to take into account that in an observational study people might be
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more likely to have had a calcium channel blocker prescribed if they
had angina for example, and we know that angina is related to mortal-
ity. We might then take the following steps:

(1) Calculate a multiple logistic regression where:
Y=1 if on drug, 0 otherwise (dependent variable)
X’s (independent variables) = age, race/ethnicity, angina, BMI,
systolic blood pressure, other covariates that might influence
prescribing a calcium channel blocker.

(2) Calculate a propensity score for each person (an index based
on the regression developed above)

(3) Calculate the regression you are really interested in which is to
determine the association of calcium channel blockers with
mortality after controlling for potential confounders, where:
Z=1, if mortal event, 0 otherwise (dependent variable)
X’s = propensity score, age, race/ethnicity, plus some of the
other relevant covariates that were in the original propensity
equation.

One problem with propensity analysis is that it depends on which
variables you have to enter into the equation to get the propensity score;
they may describe propensity, or they may not. There are differing
views on how useful such an analysis is. It is described in more detail
in the references given at the end.

4.19 Survival Analysis: Life Table Methods

Survival analysis of data should be used when the follow-up times dif-
fer widely for different people or when they enter the study at different
times. It can get rather complex and this section is intended only to in-
troduce the concepts. Suppose you want to compare the survival of pa-
tients treated by two different methods and suppose you have the data
shown below.23 We will analyze it by using the Kaplan–Meier survival
curves.
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DEATHS AT A GIVEN MONTH IN TWO GROUPS

Status: (D = dead at that month; L = living at that month).

(The + means patient was lost to follow-up and last seen alive at that
month.)
Status: D L D D D           D D D D L
Group A: 4,  5+, 9, 11, 12 Group B: 2,  3,  4,  5,  6+

In each group four patients had died by 12 months, and one was seen
alive some time during that year, so we don't know whether that patient
was dead or alive at the end of the year. If we looked at the data in this
way, we would have to say that the survival by one year was the same in
both groups.

Group

At end of 12 months A B

Dead 4 4

Alive 1 1

Survival rate 20% 20%

However, a more appropriate way to analyze such data is through
survival curves. The points for the curves are calculated as shown in
the table below.

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7

Case#

Time
in

Mos. Status
# Pts.
Enter

Prop. Dead
qi =

= dead
= entered

Prop.
Surv.
P1 =

1 – qi

Cum. Surv.
P1 =

Pi -1 x Pi

Group A

1 4 dead 5 1/5 = 0.2 0.80 1 x .8 = .8

2 5 surv 4 0/4 = 0.0 1.00 .8 x 1 = .8

3 9 dead 3 1/3 = 0.33 0.67 .8 x .67 = .53

4 11 dead 2 1/2 = 0.5 0.50 .53 x .5 = 27

5 12 dead 1 1/1 = 1.0 0.00 .27 x 0 = 0
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Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7

Case#

Time
in

Mos. Status
# Pts.
Enter

Prop. Dead
qi =

= dead
= entered

Prop.
Surv.
P1 =

1 – qi

Cum. Surv.
P1 =

Pi -1 x Pi

Group B

1 2 dead 5 1/5 = 0.2 0.80 1 × .8 = .8

2 3 dead 4 1/4 = 0.25 0.75 .8 × .75 = .6

3 4 dead 3 1/3 = 0.33 0.67 .6 × .67 = .4

4 5 dead 2 1/2 = 0.5 0.50 .4 × .5 = .2

5 6 surv 1 0/1 = 0.0 1.00 .2 × .1 = .2

First of all, the patients are placed in order of the time of their
death or the last time they were seen alive. Let us go through the third
row for group A. as an example.

The third patient died at 9 months (columns 1 and 2). At the be-
ginning of the 9th month there were three patients at risk of dying(out
of the total of five patients who entered the study). This is because one
of the five patients had already died in the 4th month (case #1),

Figure 4.4
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and one was last seen alive at the 5th month (case #2) and so wasn't
available to be observed. Out of these three patients at risk in the begin-
ning of the 9th month, one died (case #3). So the probability of dying in
the 9th month is 1/3 and we call this qi where i  in this case refers to the
9th month. Therefore the proportion surviving in the 9th month is pi =
1 – qi = 1 – .33 = .67.

The cumulative proportion surviving means the proportion sur-
viving up through the 9th month. To survive through the 9th month, a
patient had to have survived to the end of month 8 and have survived in
month 9. Thus, it is equal to the cumulative probability of surviving up
to the 9th month, which is .8, from column 7 row 2, and surviving in
the 9th month, which is .67. We multiply these probabilities to get .8 ×
.67 = .53 as the probability of surviving through the 9th month. If we
plot these points as in Figure 4.4, we note that the two survival curves
look quite different and that group A did a lot better.

Survival analysis gets more complicated when we assume that pa-
tients who have been lost to follow-up in a given interval of time would
have died at the same rate as those patient on whom we had informa-
tion. Alternatively, we can make the calculations by assuming they all
died within the interval in which they were lost to follow-up, or they all
survived during that interval.

Survival analysis can also be done while controlling for confound-
ing variables, using the Cox proportional hazards model.

4.20 Cox Proportional Hazards Model

The Cox proportional hazards model is a form of multivariate survival
analysis that can control for other factors. The dependent variable is
time to event (or survival time), which could be death, heart attack, or
any other event of interest. This is in contrast to multiple logistic r e-
gression, where the dependent variable is a yes-or-no variable.

Cox proportional hazards model is appropriately used when there
are different follow-up times because some people have withdrawn
from the study, or can't be contacted. People falling into one of those
categories are considered to have “censored” observations. If the event
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of interest is, say, stroke, then people who died during the study from
accidental causes, would also be “censored” because we couldn't know
whether they would have gone on to have a stroke or not, had they lived
to the end of the study.

The coefficients from this analysis can be used to calculate the
relative risk of event, after controlling for the other covariates in the
equation. The relative risk from Cox proportional hazards models is
more accurately called the “hazard ratio” but will be referred to as
relative risk here for the sake of simplifying the explanations. An ex-
ample of how to interpret results from such an analysis is given from
the Systolic Hypertension in the Elderly Program (SHEP). This was a
study of 4,736 persons over age 60 with isolated systolic hypertension
(i.e., people with high systolic blood pressure and normal diastolic
blood pressure) to see if treatment with a low-dose diuretic and/or beta-
blocker would reduce the rate of strokes compared with the rate in the
control group treated with placebo.

A sample of a partial computer printout of a Cox regression analy-
sis from the SHEP study is shown below. The event of interest is stroke
in the placebo group.

Independent Variable Beta Coefficient S.E. eBeta  = RR

Race –0.1031 .26070 0.90

Sex (male) 0.1707 .19520 1.19

Age 0.0598 .01405 1.06

History of diabetes 0.5322 .23970 1.70

Smoking (Baseline) 0.6214 .23900 1.86

Let us look at the history of diabetes. The RR = e.5322  = 1.70, which
is the natural logarithm e raised to the power specified by the beta co-
efficient; e = 2.7183. (Don't ask why.) This means that a person with
untreated systolic hypertension who has a history of diabetes has 1.7
times the risk of having a stroke than a person with the same other
characteristics but no diabetes. This can also be stated as a 70% greater
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risk. The 95% confidence limits for the r elative risk are 1.06, 2.72,
meaning that we are 95% confident that the relative risk of stroke for
those with a history of diabetes lies within the interval between 1.06,
2.72. The formula for the 95% confidence interval for relative risk is

Limit 1 = e [beta – 1.96 (S.E.)]

Limit 2 = e [beta + 1.96 (S.E.)]

If we are dealing with a continuous variable, like age, the RR is
given per one unit or 1 year age increase. The relative risk per 5-year
increase in age is

e 5 beta = e 5 × .0598  = 1.35

There is a 34% increase in risk of future stroke per 5-year greater
age at baseline, controlling for all the other variables in the model. To
calculate confidence intervals for this example, you also need to multi-
ply the s.e. by 5 (as well as multiplying the beta by 5), so the 95% confi-
dence intervals of RR are: [1.18, 1.55] for a 5-year increase in age.

Appendix G provides additional information on exploring a J or U
shape relationship between a variable and the outcome.

4.21 Selecting Variables For Multivariate Models

Suppose we want to determine the effect of depression on subsequent
heart disease events using data from a prospective follow-up study. We
can run Cox proportional hazards models to obtain relative risk of de-
pression for heart disease endpoints, but we want to control for con-
founders. Otherwise any association we see might really be a reflection
of some other variable, like say smoking which is related to depression
and is also a risk factor for heart disease. How shall we go about de-
ciding which variables to put in the model? There is no single answer
to that question and different experts hold somewhat different views,
although it is generally agreed that known confounders should be in-
cluded. So we would put in variables that are significantly related to de-
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pression and also to heart disease among the non-exposed, i.e. non-
depressed. We would not include variables that are presumed from past
experience to be either highly correlated to depression (referred to as
collinear) or intermediate in the pathway relating depression to heart
disease, such as say some blood biomarker related to heart disease
which is elevated by depression. In such a case, the elevation in the
blood biomarker is intermediate between depression and heart disease;
it may be the first manifestation of heart disease. The point is that a lot
of judgment has to be used in selecting variables for inclusion. The
objective is to see whether effects of depression that were found remain
after accounting for other established risk factors.

One strategy is to start by getting the relative risk of depression
alone, and then add successively, one at a time, other potential con-
founders to see if they change the relative risk for depression by 10% or
more (though that is an arbitrary percentage). Variables that qualify by
this criterion are kept in the model. For example, in the study of de-
pression and deaths from cardiovascular causes, among post-
menopausal women enrolled in the Women’s Health Initiative, who
had no prior cardiovascular disease, the relative risk associated with
depression controlling for age and race was 1.58; adding education
and income to that resulted in a relative risk of 1.52. Adding additional
variables to the model (diabetes, hypertension, smoking, high choles-
terol requiring pills, hormone use, body mass index and physical activ-
ity) didn’t change things, resulting in a relative risk of 1.50. So it was
concluded that depression was an independent risk factor for cardio-
vascular death.

Now if one were interested in developing a model that would predict
risk (rather than one that would evaluate whether a particular risk
factor was an independent contributor to risk, as in the example
above), one might chose other strategies, like stepwise regression.
Stepwise regression can be forward stepwise or backward stepwise and
computer programs calculating regressions ask you to specify which
you want.

The basic principle is that in forward stepwise regression you first
enter the single variable that has the highest correlation with your out-
come, then keep adding variables one at a time until you add one that is
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not statistically significant at some pre-chosen level, then stop. I n
backward stepwise regression you start out with all the potential vari-
ables that can be explanatory and drop them one at a time, eliminating
the one that is least significant (has the highest p value) first, until
dropping the next variable would result in a poorer model.

Many people don’t like stepwise regression because it is somewhat
arbitrary; it depends on the significance levels you chose to enter or
leave the model and also a variable may have quite a different effect if it
is in a model with some other variables that might modify it, rather
than when it is in the model alone. Another strategy is to look at all
possible regressions—i.e. look at all two variable models, then at all
possible 3 variable models and so on. You select the best one according
to how much of the variance in the dependent variable is explained by
the model. An excellent discussion of variable selection in epidemiologic
models is by Sander Greenland24 and also in the advanced texts noted
in the Suggested Readings section. 

4.22 Interactions: Additive and Multiplicative Models

An interaction between two variables means that the effect of one vari-
able on the outcome of interest is different depending on the level of the
other variable, as described in Section 3.26.  Interactions may be addi-
tive , where the joint effect of two variables is greater than the sum of
their individual effects, or multiplicative, where the joint effect of the
two variables is greater than the product of the individual effects of
each variable.

Logistic and Cox regression models are inherently multiplicative.
When we say that smoking carries a relative risk of 2 for coronary
heart disease for example, we mean that smokers are two times  more
likely than non-smokers to get the disease. We may want to know if
there is an interaction between smoking and hypertension. In other
words, we want know whether smoking among hypertensives has a
greater effect on heart attacks than we would expect from knowing the
separate risks of smoking and hypertension. We can test the hypothesis
of no interaction versus the alternative hypothesis of an interaction, but
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first we need to know what we would expect under a multiplicative
model if there were no interaction.

Consider two dichotomous variable A and B.
The table below shows the pattern of relative risks expected under

the multiplicative model if there is no multiplicative interaction. The
reference group is RRno,no  = 1 (in other words all our comparisons are
to the risk among those who have neither A nor B). Note that RRyes,yes  =
RRyes,no x RRno,yes  = 2.0 x 1.5 = 3.0. (RRyes, no is the relative risk of B in the
absence of A, and RRno, yes is the relative risk of A in the absence of B).

Relative Risk (RR)
A no A yes

B no RRno,no = 1 RRno,yes= 1.5

B yes RRyes,no= 2.0 RRyes,yes=3.0

If our observed RRyes,yes  is significantly different from 3.0 we can
reject the null hypothesis of no interaction and conclude that there is a
multiplicative interaction.

To test this statistically, we would include a product term in our r e-
gression model, (multiplying the value of variable B by the value of
variable A for each person to get a new variable which is the product of
A and B) and then calculate the following quantity:

ˆ log

tan ˆ
β

β
( )coefficient of the product term in the istic regression

s dard error of

This quantity squared is approximately distributed as Chi-Square with
1 degree of freedom.

What we are really testing is whether the coefficient β̂  is signifi-
cantly different from 0. If it is, then this is equivalent to concluding that
the RRyes,yes  is significantly different from our expected value of 3.0

Suppose we wanted to see what kind of incidence figures might give
rise to the table above. Remember, incidence is absolute risk, while
relative risk is the absolute risk in one group relative to the absolute
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risk in the reference group. The two tables below both contain inci-
dence figures that would give rise to the RR table above, so you can see
it is possible to have different incidence rates or risks which have the
same relative risk.

Risk or Incidence per 1,000
A no A yes

B no Ino,no  =  20 Ino,yes = 30

B yes Iyes,no  = 40 Iyes,yes  = 60

A no A yes

B no Ino,no  =  10 Ino,yes = 15

B yes Iyes,no  = 20 Iyes,yes  = 30

Additive risk is less commonly tested for, although some people
think it should be. It is calculated from a difference in absolute risks
(rather than from the ratio of absolute risks). Under the hypothesis of
no interaction in an additive model, we would expect the data in the ta-
bles below.

Incidence per 1,000
A no A yes

B no Ino,no  =  20 Ino,yes = 30

B yes Iyes,no  = 40 Iyes,yes  = 50

Note: Incidenceyes,yes  = Base incidence  + effect of A + effect of B or

I yes,yes  =  Ino,no+ (Ino,yes  – I no,no )  +  (Iyes,no  – Ino,no ) = 20 + 10 + 20 = 50
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Risk Differences or Attributable Risk (AR)
Per 1,000

A no A yes

B no ARno,no  = 0 ARno,yes  = 10

B yes ARyes,no  = 20 ARyes,yes  = 30

The ARyes,yes  = effect of A plus effect of B = 10 + 20 = 30
If the ARyes,yes  is sufficiently different from the expected value of 30,
then we may conclude there is an interaction on the additive scale.

The relative risk table that corresponds to the incidence table for the
example given above of the additive model is:

Relative Risk (RR)
A no A yes

B no RRno,no  = 1 RRno,yes  = 1.5

B yes RRyes,no  = 2.0 RRyes,yes  =2.5

Thus, the expected value of RRyes,yes  under the null hypothesis of no
additive interaction is: RRyes,yes  = RRyes,no  + RRno,yes  – 1. If RRyes,yes  is sig-
nificantly different from the above expectation, we would be able to r e-
ject the null hypothesis of additive risk.

Interactions depend on the scale—i.e. whether we are talking about
relative risks (multiplicative) or attributable r isks (additive). It is wise to
consult a statistician for appropriate interpretations. Excellent, more
technical sources are Epidemiology: Beyond the Basics by Moyses
Szklo and F. Javier Nieto and Modern Epidemiology  by Rothman and
Greenland.

Summary:

Additive model interaction effect:
See if observed value of ARyes,yes  differs from expected value:
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ARyes,yes  = ARyes,no  + ARno,yes

or, RRyes,yes  = RRyes,no  + RRno,yes  –1

Multiplicative model interaction effect:
See if observed value of RRyes,yes  differs from expected value:
RRyes,yes  = RRyes,no x RRno,yes
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Chapter 5
MOSTLY ABOUT SCREENING

I had rather take my chance that some traitors will escape detection
than spread abroad a spirit of general suspicion and distrust, which
accepts rumor and gossip in place of undismayed and unintimidated
inquiry.

Judge Learned Hand
October 1952

5.1 Sensitivity, Specificity, and Related Concepts

The issue in the use of screening or diagnostic tests is to strike the
proper trade-off between the desire to detect the disease in people who
really have it and the desire to avoid thinking you have detected it in
people who really don't have it.

An important way to view diagnostic and screening tests is through
sensitivity analysis. The definitions of relevant terms and symbols are
as follows:

T+ means positive test, T– means negative test, D+ means having
disease, D– means not having disease.

True Condition
Presence of Disease

Yes
+

No
–

+ a b
a + b = all

testing positiveDiagnostic
Test

– c d
c + d = all

testing negative

a + c = all
diseased

b + d = all
nondiseased

a + b + c + d =
total population
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SENSITIVITY : the proportion of diseased persons the test classifies as
positive,

(probability of positive test, given dis-
ease)

SPECIFICITY : the proportion of nondiseased persons the test classi-
fies as negative,

(probability of negative test, given no
disease)

FALSE-POSITIVE RATE: the proportion of nondiseased persons the
test classifies (incorrectly) as positive,

(probability of positive test, given no
disease)

FALSE-NEGATIVE  RATE:  the proportion of diseased people the test
classifies (incorrectly) as negative,

(probability of negative test given dis-
ease)

PREDICTIVE  VALUE OF A POSITIVE TEST:  the proportion of
positive tests that identify diseased persons,

(probability of disease given positive
test)

PREDICTIVE  VALUE OF A NEGATIVE TEST: the proportion of
negative tests that correctly identify nondiseased people,

(probability of no disease given
negative test)

=
a

a +  c
 =  P(T + | D+);

=
d

b +  d
 =  P(T D – | –);

=
b

b +  d
 =  P(T + | );D –

=
c

a +  c
 =  P(T - | D+);

=
a

a +  b
 =  P(D + | T+);

=
d

c +  d
 =  P(D – | );T –
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ACCURACY  OF THE TEST:  the proportion of all tests that are cor-
rect classifications,

=
a +  d

a +  b +  c +  d

LIKELIHOOD  RATIO OF POSITIVE TEST:  the ratio of probabil-
ity of a positive test, given the disease, to the probability of a positive test,
given no disease,

positive test, given disease versus positive    
test, given no disease

=
sensitivity

false positive rate
 =  

sensitivity

1 –  specificity

LIKELIHOOD  RATIO OF A NEGATIVE TEST:

negative test, given disease versus negative
test, given no disease

=
1 – sensitivity

specificity

Note also the following relationships:

(1) Specificity + the false-positive rate = 1;

d

b +  d
 +  

b

b +  d
 =  1

therefore, if the specificity of a test is increased the false-positive
rate is decreased.

(2) Sensitivity + false-negative rate = 1;

a

a +  c
 +  

c

a +  c
 =  1

=
P(T + | D +)

P(T + | D –)
 =

=
P(T – | D +)

P(T – | D )
 =

–
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therefore, if the sensitivity of a test is increased the false-negative
rate will be decreased.

PRETEST PROBABILITY OF DISEASE:  The pretest probability of
a disease is its prevalence. Knowing nothing about an individual and in
the absence of a diagnostic test, the best guess of the probability that the
patient has the disease is the prevalence of the disease.

POSTTEST  PROBABILITY OF DISEASE: After having the results
of the test, the posttest probability of disease if the test is normal is
c/(c+d), and if it is abnormal the posttest probability is a/(a+b). The last
is the same as the PREDICTIVE VALUE OF A POSITIVE TEST.

A good diagnostic test is one that improves your guess about the
patient's disease status over the guess you would make based on just
the general prevalence of the disease. Of primary interest to a clinician,
however, is the predictive value of a positive test (PV+), which is the
propor tion of people who have a positive test who really have the dis-
ease, a/(a+b), and the predictive value of a negative test (PV-) , which is
the proportion of people with a negative test who really don't have the
disease, d/(c+d).

Sensitivity and specificity are characteristics of the test itself, but the
predictive values are very much influenced by how common the disease
is. For example, for a test with 95% sensitivity and 95% specificity used
to diagnose a disease that occurs only in 1% of people (or 100 out of
10,000), we would have the following:

Disease
Yes
+

No
–

+ 95 495 590
Test

– 5 9,405 9,410

100 9,900 10,000
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The PV+ is 95/590 = .16; that means that only 16% of all people
with positive test results really have the disease; 84% do not have the
disease even though the test  is positive. The PV- however, is 99.9%,
meaning that if a patient has a negative test result, you can be almost
completely certain that he really doesn't have the disease. The practical
value of a diagnostic test is dependent on a combination of sensitivity,
specificity, and disease prevalence, all of which determine the predictive
values of test results.

If the prevalence of the disease is high, the predictive value of a
positive test will also be high, but a good test should have a high predic-
tive value even though the prevalence of the disease is low. Let us take a
look at the relationship between disease prevalence and sensitivity,
specificity and predictive value of a test, shown in Figure 5.1.

Let us, for instance, consider a test that has a sensitivity of .95 and
a specificity of .99. That means that this test will correctly label as dis-
eased 95% of individuals with the disease and will correctly label as
nondiseased 99% of individuals without the disease. Let us consider a
disease whose prevalence is 10%, that is, 10% of the population have
this disease, and let us now look and see what the predictive value of a
positive test is. We note that it is approximately .90, which means that
90% of individuals with a positive test will have the disease. We can see
that the predictive value of a positive test, drops to approximately .70 for
a test that has a sensitivity of .95 and a specificity of .95, and we can see
that it further drops to approximately .40 for a test that has a sensitivity
of .95 and a specificity of .85. In other words, only 40% of individuals
with a positive test would truly have the disease for a test that has that
particular sensitivity and specificity.

One thing you can note immediately is that for disease of low
prevalence, the predictive value of a positive test goes down rather
sharply . The other thing that you can notice almost immediately is that
large difference in sensitivity makes a small difference in the predictive
value of a positive test and that a small difference in specificity makes a
big difference in the predictive value of a positive test. This means that
the characteristic of a screening test described by specificity is more im-
portant in determining the predictive value of a positive test than is sen-
sitivity.
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Figure 5.1

Figure 5.2 shows us a situation of a test that's virtually perfect. A
test that has a sensitivity of .99 and a specificity of .99 is such that at
most prevalence levels of disease the probability of disease, given a nor-
mal or negative test  result, is very low. That would be a very good test,
and the closer we can get to that kind of situation the better the diag-
nostic test is. The diagonal line in the center represents a test with a
sensitivity of .50 and a specificity of .50 and that, of course, is a com-
pletely useless test because you can note that at the prevalence of the
disease of .4 the probability of the disease given a positive test is also .4,
which is the same as the probability of the disease without doing any
test, and this pertains at each prevalence level. Therefore, such a test is
completely useless whereas a test with sensitivity and specificity of .99 is
excellent and anything in between represents different usefulness for
tests. This then, is an analytic way to look at diagnostic test procedures.

A particularly relevant example of the implications of prevalence on
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Figure 5.2

predictive value is the case of screening for the presence of infection
with the AIDS virus. Since this disease is generally fatal, incurable at
present, has a stigma attached to it, and entails high costs, one would
not like to use a screening strategy that falsely labels people as positive
for HIV, the AIDS virus.

Let us imagine that we have a test for this virus that has a sensitiv-
ity of 100% and a specificity of 99.995%, clearly a very good test. Sup-
pose we apply it routinely to all female blood donors, in whom the
prevalence is estimated to be very low, .01%. In comparison, suppose
we also apply it to homosexual men in San Fran-cisco in whom the
prevalence is estimated to be 50%.22 For every 100,000 such people
screened, we would have values as shown in the table on the following
page.

Although in both groups all those who really had the disease would
be identified, among female blood donors one third of all people who
tested positive would really not have the disease; among male homo-
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Positive Predictive Value as a Function of Prevalence
Test characteristics:

Sensitivity = 100%; Specificity = 99.995%; False positive rate = .005%

A. FEMALE BLOOD DONORS Prevalence = .01%,

True State

HIV: + HIV: –

+ 10 5 15

Screen Result

– 0 99,985 99,985

10 99,990 100,000

PV+ = 10/15  = .66667

B. MALE HOMOSEXUALS Prevalence = 50%,

True State

HIV: + HIV: –

+ 50,000 3 50,003

Screen Result

– 0 49,997 49,997

50,000 50,000 100,000

PV+ = 50,000/50,003 = .99994

sexuals only 6 out of 100,000 people with a positive test would be falsely
labeled.

5.2 Cutoff Point and Its Effects on Sensitivity and Specificity

We have been discussing sensitivity and specificity as characteristic of a
diagnostic test; however, they can be modified by the choice of the cut-



Mostly About Epidemiology 137

off point between normal and abnormal . For example, we may want to
diagnose patients as hypertensive or normotensive by their diastolic
blood pressure. Let us say that anyone with a diastolic pressure of 90
mm Hg or more will be classified as “hypertensive.” Since blood pres-
sure is a continuous and variable characteristic, on any one measure-
ment a usually nonhypertensive individual may have a diastolic blood
pressure of 90 mm Hg or more, and similarly a truly hypertensive in-
dividual may have a single measure less than 90 mm Hg. With a cutoff
point of 90 mm Hg, we will classify some nonhypertensive individuals
as hypertensive and these will be false positives. We will also label some
hypertensive individuals as normotensive and these will be false nega-
tives. If we had a more stringent cutoff point, say, 105 mm Hg, we
would classify fewer nonhypertensives as hypertensive since fewer
normotensive individuals would have such a high reading (and have
fewer false positives).

However, we would have more false negatives (i.e., more of our
truly hypertensive people might register as having diastolic blood pres-
sure less than 105 mm Hg on any single occasion). These concepts are
illustrated in Figure 5.3.

There are two population distributions, the diseased and nondis-
eased, and they overlap on the measure of interest, whether it is blood
pressure, blood glucose, or other laboratory values. There are very few
screening tests that have no overlap between normal and diseased indi-
viduals.

One objective in deciding on a cutoff point is to strike the proper
balance between false positives and false negatives. As you can see in
Figure 5.3, when the cutoff point is at A, all values to the right of A are
called positive (patient is considered to have the disease). In fact, how-
ever, the patient with a value at the right of cutoff A could come from
the population of nondiseased people, since a proportion of people who
are perfectly normal may still have values higher than those above A,
as seen in the normal curve. The area to the right of A under the no-
disease curve represents the false positive.

If an individual has a test value to the left of cutoff A, he may be a
true negative or he may be a false negative because a proportion of in-
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Figure 5.3

dividuals with the disease can still have values lower than cutoff A. The
area under the “disease” curve to the left of cutoff A represents the
proportion of false negatives.

If we move the cutoff point from A to B, we see that we decrease the
area to the right of the cutoff, thereby decreasing the number of false
positives, but increasing the number of false negatives. Corre-
spondingly, with cutoff A, we have a greater probability of identifying
the truly diseased correctly, that is, pick up more true positive, thereby
giving the test with cutoff A greater sensitivity. With cutoff B, we are
less likely to pick up the true positive (lower sensitivity) but more likely
to correctly identify the true negatives (higher specificity).

Thus, by shifting the cutoff point beyond what we call a test posi-
tive, we can change the sensitivity and specificity characteristics of the
test. The choice of cutoff, unless there is some special physiological
reason, may be based on consideration of the relative consequences of
having too many false positives or too many false negatives. In a
screening test for cancer, for example, it would be desirable to have a
test of high sensitivity (and few false negatives), since failure to detect
this condition early is often fatal. In a mass screening test for a less
serious condition or for one where early detection is not critical, it may
be more desirable to have a high specificity in order not to overburden
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the health care delivery system with too many false positives. Cost con-
sideration may also enter into the choice of cutoff point.

The relationship between sensitivity (the ability to correctly identify
the diseased individuals) and the false-positive fractions is shown in
Figure 5.4.

Figure 5.4

This is called the receiver operating characteristic (ROC) curve of
the test. Often we can select the cutoff point between normal and ab-
normal depending on the trade-off we are willing to make between sen-
sitivity and the proportion of false positives.

We can see that with cutoff A, while we can detect a greater per-
centage of truly diseased individuals, we will also have a greater pro-
portion of false-positive results, while with cutoff B we will have fewer
false positives but will be less likely to detect the truly diseased. Screen-
ing tests should have corresponding ROC curves drawn.
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Chapter 6
MOSTLY ABOUT CLINICAL TRIALS

It is no easy task to pitch one's way from truth to truth through
besetting errors.

Peter Marc Latham
1789–1875

“I wouldn’t have seen it if I didn’t believe it!”
Attributed to Yogi Berra

Unfortunately sometimes scientists see what they believe instead of be-
lieving what they see. Randomized, controlled clinical trials are in-
tended to avoid that, and other kinds, of bias.

A randomized clinical trial is a prospective experiment to compare
one or more interventions against a control group in order to deter-
mine the effectiveness of the interventions. A clinical trial may compare
the value of a drug versus a placebo. A placebo is an inert substance
that looks like the drug being tested. It may compare a new therapy
with a currently standard therapy, surgical with medical intervention,
two methods of teaching reading, two methods of psychotherapy. The
principles apply to any situation in which the issue of who is exposed to
which condition is under the control of the experimenter and the
method of assignment is through randomization.

6.1 Features of Randomized Clinical Trials

(1) There is a group of patients who are designated study patients.
All criteria must be set forth and met before a potential candidate
can be considered eligible for the study. Any exclusions must be
specified.

(2) Any reasons for excluding a potential patient from participating
in the trial must be specified prior to starting the study. Other-
wise, unintentional bias may enter. For example, supposing you
are comparing coronary bypass surgery with the use of a new
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drug for the treatment of coronary artery disease. Suppose a pa-
tient comes along who is eligible for the study and gets assigned
to the surgical treatment. Suppose you now discover the patient
has kidney disease. You decide to exclude him from the study be-
cause you think he may not survive the surgery with damaged
kidneys. If you end up systematically excluding all the sicker pa-
tients from the surgical treatment, you may bias the results in fa-
vor of the healthier patients, who have a better chance of survival
in any case. In this example, kidney disease should be an exclu-
sion criterion applied to the patients before they are assigned to
any treatment group.

(3) Once a patient is eligible, he or she is randomly assigned to the
experimental or control group. Random assignment is not “hap-
hazard” assignment but rather it means that each person has an
equal chance of being an experimental or control patient. It is
usually accomplished by the use of a table of random numbers,
described later, or by computer-generated random numbers.

(4) Clinical trials may be double-blind, in which neither the treating
physician nor the patient knows whether the patient is getting the
experimental treatment or the placebo; they may be single-blind,
in which the treating physician knows which group the patient is
in but the patient does not know. A double-blind study contains
the least bias but sometimes is not possible to do for ethical or
practical reasons. For example, the doctor may need to know the
group to which the patient belongs so that medication may be
adjusted for the welfare of the patient. There are also trials in
which both patients and physicians know the treatment group, as
in trials comparing radical mastectomy versus lumpectomy for
treatment of breast cancer. When mortality is the outcome the
possible bias introduced is minimal, provided that exclusion crite-
ria were specified and applied before eligibility was finally deter-
mined and that the randomization of eligible participants to
treatment groups was appropriately done.

(5) While clinical trials often compare a drug or treatment with pla-
cebo, they may also compare two treatments with each other, or a
treatment and “usual care”. Trials that compare an intervention
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with “usual care”, obviously cannot be blinded, for example
comparing a weight-loss nutritional intervention with “usual”
diet; however, the assessment of effect (measurement of weight,
or blood pressure, or some hypothesized effect of weight loss)
should be done in a blinded fashion, with the assessor not
knowing which group the participant has been assigned to.

(6) It is essential that the control group be as similar to the treatment
group as possible so that differences in outcome can be attributed
to differences in treatment and not to different characteristics of
the two groups. Randomization helps to achieve this comparabil-
ity.

(7) We are concerned here with Phase III trials. New drugs have to
undergo Phase I and II trials, which determine toxicity, and
safety and efficacy, respectively. These studies are done on small
numbers of volunteers.  Phase III trials are large clinical trials,
large enough to provide an answer to the question of whether the
drug tested is better than placebo or than a comparison drug.

6.2 Purposes of Randomization

The basic principle in designing clinical trials or any scientific investi-
gation is to avoid systematic bias. When it is not known which variables
may affect the outcome of an experiment, the best way to avoid system-
atic bias is to assign individuals into groups randomly. Randomization
is intended to insure an approximately equal distribution of variables
among the various groups of individuals being studied. For instance, if
you are studying the effect of an antidiabetic drug and you know that
cardiac risk factors affect mortality among diabetics, you would not
want all the patients in the control group to have heart disease, since
that would clearly bias the results. By assigning patients randomly to
the drug and the control group, you can expect that the distribution of
patients with cardiac problems will be comparable in the two groups.
Since there are many variables that are unknown but may have a
bearing on the results, randomization is insurance against unknown
and unintentional bias. Of course, when dealing with variables known
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to be relevant, one can take these into account by stratifying and then
randomizing within the strata . For instance, age is a variable relevant
to diabetes outcome. To stratify by age, you might select four age
groups for your study: 35–44, 45–54, 55–64, 65 plus. Each group is
considered a stratum. When a patient enters into the clinical trial his
age stratum is first determined and then he is randomly assigned to
either experimental or control groups. Sex is another variable that is
often handled by stratification.

Another purpose of randomization has to do with the fact that the
statistical techniques used to compare results among the groups of pa-
tients under study are valid under certain assumptions arising out of
randomization. The mathematical reasons for this can be found in the
more advanced texts listed in the Suggested Readings.

It should be remembered that sometimes randomization fails to r e-
sult in comparable groups due to chance. This can present a major
problem in the interpretation of results, since differences in outcome
may reflect differences in the composition of the groups on baseline
characteristics rather than the effect of intervention. Statistical methods
are available to adjust for baseline characteristics that are known to be
related to outcome. Some of these methods are logistic regression, Cox
proportional hazards models, and multiple regression analyses.

6.3 How to Perform Randomized Assignment

Random assignment into an experimental group or a control group
means that each eligible individual has an equal chance of being in
each of the two groups. This is often accomplished by the use of ran-
dom number tables. For example, an excerpt from such a table is
shown below:

48461 70436 04282
76537 59584 69173

Its use might be as follows. All even-numbered persons are assigned to
the treatment group and all odd-numbered persons are assigned to the
control groups. The first person to enter the study is given the first
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number in the list, the next person gets the next number and so on.
Thus, the first person is given number 48461, which is an odd number
and assigns the patient to the control group. The next person is given
76537; this is also an odd number so he too belongs to the control
group. The next three people to enter the study all have even numbers
and they are in the experimental group. In the long run, there will be
an equal number of patients in each of the two groups.

6.4 Two-Tailed Tests Versus One-Tailed Test

A clinical trial is designed to test a particular hypothesis. One often sees
this phrase in research articles: “Significant at the .05 level, two-tailed
test.” Recall that in a previous section we discussed the concept of the
“null hypothesis,” which states that there is no difference between two
groups on a measure of interest. We said that in order to test this hy-
pothesis we would gather data so that we could decide whether we
should reject the hypothesis of no difference in favor of some alternate
hypothesis. A two-tailed test versus a one-tailed test refers to the alter-
nate hypothesis posed. For example, suppose you are interested in
comparing the mean cholesterol-level of a group treated with a choles-
terol-lowering drug to the mean of a control group given a placebo.
You would collect the appropriate data from a well-designed study and
you would set up the null hypothesis as

Ho: mean cholesterol in treated group = mean cholesterol in control
group.

You may choose as the alternate hypothesis

HA : mean cholesterol in treated group is greater than the mean in
controls.

Under this circumstance, you would reject the null hypothesis in
favor of the alternate hypothesis if the observed mean for women was
sufficiently greater than the observed mean for men, to lead you to the
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conclusion that such a great difference in that direction is not likely to
have occurred by chance alone. This, then, would be a one-tailed test of
the null hypothesis.

If, however, your alternate hypothesis was that the mean choles-
terol level for females is different  from the mean cholesterol level for
males, then you would reject the null hypothesis in favor of the alter -
nate either  if the mean for women was sufficiently greater than the
mean for men or if the mean for women was sufficiently lower  than
the mean for men. The direction of the difference is not specified. I n
medical research it is more common to use a two-tailed test of signifi-
cance since we often do not know in which direction a difference may
turn out to be, even though we may think we know before we start the
experiment. In any case, it is important to report whether we are using
a one-tailed or a two-tailed test.

6.5 Clinical Trial as “Gold Standard”

Sometimes observational study evidence can lead to misleading conclu-
sions about the efficacy or safety of a treatment, only to be overturned
by clinical trials evidence, with enormous public health implications.
The Women’s Health Initiative (WHI) clinical trial of hormone ther -
apy is a dramatic example of that.21 Estrogen was approved by the FDA
for relief of post-menopausal symptoms in 1942, aggressively marketed
in the mid 1960’s, and after 1980, generally combined with progestin
for women with a uterus because it was found that progestin offset the
risks of estrogen for uterine cancer. In the meantime many large pro-
spective follow-up studies almost uniformly showed that estrogen r e-
duced heart diseases by 30-50%. In the 1993 WHI mounted a large
clinical trial to really answer the question of long-term risks and bene-
fits of hormone therapy. One part was the study of estrogen alone for
women had had a hysterectomy, and thus didn’t need progestin to
protect their uterus, and another part was of estrogen plus progestin
(E+P) for women with an intact uterus.

The E+P trial was a randomized, double blind, placebo-controlled
clinical trial meant to run for an average of 8.5 years. It included
16,608 women ages 50-79; such a large sample size was deemed neces-
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sary to obtain adequate power. The trial was stopped in 2002, three
years before its planned completion, because the Data and Safety
Monitoring Board or DSMB, (as described in Chapter 9) found
estrogen plus progestin caused an excess of breast cancer, and sur-
prisingly, there was a significant and entirely unexpected excess of
heart attacks in the E+P group compared to placebo! Final results,
reported in subsequent papers, showed that the adverse effects (a 24%
increase in invasive breast cancer, 31% increase in strokes, 29% in-
crease in coronary heart disease and more than a two-fold increase in
pulmonary embolism and in dementia) offset the benefits, (a 37% de-
crease in colorectal cancer and 34% decrease in hip fractures), so that
taken together, the number of excess harmful events per year was
substantial. Since there were 6 million women taking this preparation
in the United States alone, and millions more globally, these results
have important implications for women other than those in the trial
itself.

Why such different results from a clinical trial than from observa-
tional longitudinal studies? The most likely explanation is selection
bias. Women who were taking hormones and then followed to observe
their rates of heart disease, were in virtually all the observational stud-
ies, healthier, thinner, more active, more educated, less overweight,
than their non-hormone taking counterparts, and their healthier life-
style and better baseline health status, rather than the hormones per se,
was what accounted for their lower rates of heart disease.

The question now is answered using the “gold standard,” the clini-
cal trial: estrogen plus progestin does not protect against heart disease,
and in fact increases the risk. As noted before, the impact of this r e-
search is great since so many millions of women were using the prepa-
ration tested.

6.6 Regression Toward the Mean

When you select from a population those individuals who have high
blood pressure and then at a later time measure their blood pressure
again, the average of the second measurements will tend to be lower
than the average of the first measurements and will be closer to the
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mean of the original population from which these individuals were
drawn. If between the first and second measurements you have insti-
tuted some treatment, you may incorrectly attribute the decline of aver -
age blood pressure in the group to the effects of treatment, whereas
part of that decline may be due to the phenomenon called regression
toward the mean . (That is one reason why a placebo control group is
most important for comparison of effects of treatment above and be-
yond that caused by regression to the mean.)  Regression to the mean
occurs when you select out a group because individuals have values
that fall above some criterion level, as in screening. It is due to variabil-
ity of measurement error. Consider blood pressure.

The observed value of blood pressure is the person's true value
plus some unknown amount of error. The assumption is that people's
measured blood pressure is normally distributed around the mean of
their true but unknown value of blood pressure. Suppose we will only
take people into our study if their blood pressure is 160 or more. Now
suppose someone's true systolic blood pressure is 150, but we measure
it 160. We select that person for our study group just because his
measured value is high. However, the next time we measure his blood
pressure, he is likely to be closer to his true value of 150 than the first
time. (If he had been close to his true value of 150 the first time, we
would never have selected him for our study to begin with, since he
would have been below our cutoff point. So he must have had a large
error at that first measurement.) Since these errors are normally dis-
tributed around his true mean of 150, the next time we are more likely
to get a lower error and thus a lower measured blood pressure than the
160 that caused us to select him.

Suppose now that we select an entire subgroup of people who have
high values. The averages of the second measurements of these se-
lected people will tend to be lower than the average of their first meas-
urements, and closer to the average of the entire group from which we
selected them. The point is that people who have the highest values the
first time do not always have the highest values the second time because
the correlation between the first and second measurement is not per-
fect. Similarly, if we select out a group of people because of low values
on some characteristic, the average of the second measurements on
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these people will be higher than the average of their first measure-
ments, and again closer to the mean of the whole group.

Another explanation of this phenomenon may be illustrated by the
following example of tossing a die. Imagine that you toss a die 360
times. Whenever the die lands on a five or a six, you will toss the die
again. We are interested in three different averages: (1) the mean of the
first 360 tosses, (2) the mean of the tosses that will result in our tossing
again, and (3) the mean of the second tosses. Our results are shown in
the table on the next page.

Although on the first toss the mean of the 360 times is 3.5, we only
pick the two highest numbers and their mean is 5.5. These 120 times
when the die landed on 5 or 6 will cause us to toss again, but on the
second toss the result can freely vary between 1 and 6. Therefore, the
mean of the second toss must be lower than the mean of the group we
selected from on the first toss specifically because it had the high
values.

First Toss Second Toss

Result

# of Times
Result Is
Obtained Result

# of Times
Result Is
Obtained

1 60

2 60

3 60

4 60

5 60 1 20

6 60 2 20

3 20

4 20

5 20

Mean of 360 tosses = 3.5 6 20

Mean of the 120 tosses that landed
5 or 6 = 5.5

Mean of the 2nd toss = 3.5



150 Biostatistics and Epidemiology: A Primer for Health Professionals

6.7 Intention-to-Treat Analysis

Data from clinical trials in general should be analyzed by comparing
the groups as they were originally randomized, and not by comparing
to the placebo control group only those in the drug group who actually
did take the drug. The people assigned to the active drug group should
be included with that group for analysis even if they never took the
drug. This may sound strange, since how can one assess the efficacy
of a drug if the patient isn't taking it? But the very reason people may
not comply with the drug regimen may have to do with adverse effects
of the drug, so that if we select out only those who do comply we have a
different group from the one randomized and we may have a biased
picture of the drug effects.

Another aspect is that there may be some quality of compliers in
general that affects outcome. A famous example of misleading conclu-
sions that could arise from not doing an intention-to-treat analysis
comes from the Coronary Drug Project. 26 This randomized, dou-
ble-blind study compared the drug clofibrate to placebo for reducing
cholesterol. The outcome variable, which was five-year mortality, was
very similar in both groups, 18% in the drug group and 19% in the
placebo group. It turned out, however, that only about two thirds of the
patients who were supposed to take clofibrate actually were compliant
and did take their medication. These people had a 15% mortality rate,
significantly lower than the 19% mortality in the placebo group. How-
ever, further analysis showed that among those assigned to the placebo
group, one third didn't take their placebo pills either. The two thirds of
the placebo group who were compliant had a mortality of 15%, just like
the ones who complied with the clofibrate drug! The noncompliant
people in both the drug and placebo groups had a higher mortality
(25% for clofibrate and 28% for placebo). It may be desirable in some
circumstances to look at the effect of a drug in those who actually take
it. In that case the comparison of drug compliers should be to placebo
compliers rather than to the placebo group as a whole.

The inclusion of non-compliers in the analysis dilutes the effects,
so every effort should be made to minimize noncompliance. In some
trials a judged capacity for compliance is an enrollment criterion and
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an evaluation is made of every patient as part of determining his or her
eligibility as to whether this patient is likely to adhere to the regimen.
Those not likely to do so are excluded prior to randomization. How-
ever, if the question at hand is how acceptable is the treatment to the
patient, in addition to its efficacy, then the basis for inclusion may be
the general population who might benefit from the drug, including the
non-compliers.

In the Women’s Health Initiative, the primary analysis was inten-
tion-to-treat. However a secondary analysis adjusted for compliance
(more commonly referred to as adherence). In this analysis the event
history of the participant was censored six months after she either
stopped taking the study pills or was taking less than 80% of the study
pills. In the placebo group the event history was censored six months
after the participant started taking hormones (some participants in the
placebo group stopped taking study pills but were prescribed hormones
by their physicians and started taking them on their own). Thus this
secondary analysis basically compared the two groups “as treated”
rather than as assigned to a particular treatment.  In the intention-to-
treat analysis the hazard ratio for coronary heart disease was 1.24
while in the “adherence adjusted” analysis it was 1.50. Thus the find-
ings from the intention-to-treat analysis were confirmed and strength-
ened in the adherence-adjusted analyses.

6.8 How Large Should the Clinical Trial Be?

A clinical trial should be large enough, that is, have big enough sample
size, to have a high likelihood of detecting a true difference between the
two groups. If you do a small trial and find no significant difference,
you have gained no new information; you may not have found a dif-
ference simply because you didn't have enough people in the study. You
cannot make the statement that there is no difference between the
treatments. If you have a large trial and find no significant difference,
then you are able to say with more certainty that the treatments are
really not different.
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Suppose you do find a significant difference in a small trial with p
< .05 (level of significance). This means that the result you obtained is
likely to have arisen purely by chance less than 5 times in 100 (if there
really were no difference). Is it to be trusted as much as the same p
value from a large trial? There are several schools of thought about
this.

The p  value is an index of the strength of the evidence with regard
to rejecting a null hypothesis. Some people think that a p value is a p
value and carries the same weight regardless of whether it comes from
a large or small study. Others believe that if you get a significant result
in a small trial, it means that the effect (or the difference between two
population means) must be large enough so that you were able to detect
it even with your small samples, and therefore, it is a meaningful dif-
ference. It is true that if the sample size is large enough, we may find
statistical significance if the real difference between means is very, very
small and practically irrelevant.  Therefore, finding a significant differ-
ence in a small trial does mean that the effect was relatively large.

Still others say that in practice, however, you can have less confi-
dence that the treatments really do differ for a given p value in a small
trial than if you had obtained the same p value in testing these two
treatments in a large trial.27 This apparent paradox may arise in situa-
tions where there are many more small trials being carried out world-
wide studying the same issue than there are large trials—such as in
cancer therapy. Some of those trials, by chance alone, will turn out to
have significant results that may be misleading.

Suppose that there are 1,000 small trials of anticancer drug ther -
apy. By chance alone, 5% of these will be significant even if the thera-
pies have no effect, or 50 significant results. Since these are by chance
alone, it means we are incorrect to declare anticancer drug effects in
these trials (we have committed type I errors). Suppose, further, that
there are only 100 large trials studying this same issue. Of these, 5%,
or five such studies, will declare a difference to exist, incorrectly. So if
we combine all the trials that show significant differences incorrectly ,
we have 55 such significant but misleading p values. Of these, 50 or
91% come from small trials and 5 out of the 55 incorrect ones (or 9%)
come from the large trials. The fol lowing points are important:
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(1) There is a distinction between statistical significance and clinical
significance. A result may not have arisen by chance, that is, it
may reflect a true difference, but be so small as to render it of no
practical importance.

(2) It is best to report the actual probability of obtaining the result by
chance alone under the null hypothesis, that is, the actual p
value , rather than just saying it is significant or not. The p value
for what we commonly call “significance” is arbitrary. By cus-
tom, it has been taken to be a p value of .05 or less. But the .05
cutoff point is not sacred. The reader should decide what
strength he or she will put in the evidence provided by the study,
and the reader must have the information to make that decision.
The information must include the design of the study, sample
selection, the sample sizes, the standard deviations, and the actual
p values.

In summary:

(1) Finding no significant difference  from a small trial tells us
nothing.

(2) Finding no significant difference  in a large trial is a real finding
and tells us the treatments are likely to be equivalent.

(3) Finding a significant difference  in a small trial may or may not
be replicable.

(4) Finding a significant difference  in a large trial is to be trusted as
revealing a true difference.

6.9 What Is Involved in Sample Size Calculation?

a. Effect size

Let us say that 15% of victims of a certain type of heart attack die if they
are given drug A and 16% die if they are given drug B. Does this 1%
difference mean drug A is better?  Most people would say this is too
small a difference, even if it doesn't arise by chance, to have any clinical
importance. Suppose the difference between the two drugs is 5%.
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Would we now say drug A is better?  That would depend on how large
a difference we thought was important. The size of the difference we
want to detect is called the effect size .

To calculate sample size you need to know the minimum size of the
difference between two treatments that you would be willing to miss de-
tecting. Suppose for example that in your control group 30% of the pa-
tients without the treatment recover. It is your belief that with treatment
in the experimental group 40% will recover. You think this difference
in recovery rate is clinically important and you want to be sure that you
can detect a difference at least as large as the difference between 30%
and 40%. This means that if the treatment group recovery rate were
35% you would be willing to miss finding that small an effect. How-
ever, if the treatment rate was 40% or more, you would want to be
pretty sure to find it. How sure would you want to be?  The issue of
“how sure” has to do with the “power” of the statistical test.

b. Power

Statistical power means the probability  of finding a real effect (of the
size that you think is clinically important). The relationships among
power, significance level, and type I and type II error are summarized
below:

Significance level = probability of a type I error  = probability of
finding an effect when there really isn't one. This is also known as al-
pha or α.

Probability of type II error  = probability of failing to find an effect
when there really is one. This is also known as beta or β.

Power = 1 – probability of type II error = probability of finding
an effect when there really is one. This is also known as 1 – beta.

c. Sample size

To calculate sample size, you have to specify your choice of effect size,
significance level, and desired power . If you choose a significance level
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of .05 and a power of .80, then your type II error probability is 1 –
power or .20. This means that you consider a type I error to be four
times more serious than a type II error (.20/.05 = 4) or that you are
four times as afraid of finding something that isn't there as of failing
to find something that is. When you calculate sample size there is al-
ways a trade-off. If you want to decrease the probability of making a
type I error, then for a given sample size and effect size you will in-
crease the probability of making a type II error. You can keep both
types of error low by increasing your sample size. The top part of the
table on the next page shows the sample sizes necessary to compare two
groups with a test between two proportions under different assump-
tions.

The second row of the table shows that if you want to be able to de-
tect a difference in response rate from 30% in the control group to 50%
or more in the treatment group with a  probability (power) of .80, you
would need 73 people in each of the two groups. If, however, you want
to be fairly sure that you find a difference as small as the one between
30% and 40%, then you must have 280 people in each group.

If you want to be more sure of finding the difference, say 90% sure
instead of 80% sure, then you will need 388 people in each group
(rather than the 280 for .80 power). If you want to have a more strin-
gent significance level of .01, you will need 118 people in each group
(compared with the 73 needed for the .05 significance level) to be able to
detect the difference between 30% and 50%; you will need 455 people
(compared with 280 for the .05 level) to detect a difference from 30% to
40% response rate.

The bottom part of the table on the next page shows the impact on
sample size of a one-tailed test of significance versus a two-tailed test.
Recall that a two-tailed test postulates that the response rate in the
treatment group can be either larger or smaller  than the response rate
in the control group, whereas a one-tailed test specifies the direction of
the hypothesized difference. A two-tailed test requires a larger sample
size , but that is the one most commonly used.
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Sample Size Examples

Significance
Level

(1-tailed) Assume: Effect Size Power
Sample

Size

Control
Group
Response
Rate =

Detect
Increase in
Treatment
Group at
Least to:

With
Probability
of:

n Needed in
Each Group

30%

30%

40%

50%

.80

.80

280

73

.05

30%

30%

40%

50%

.90

.90

388

101

30%

30%

40%

50%

.80

.80

455

118

.01

30%

30%

40%

40%

.90

.90

590

153

Sample Size Examples

Significance
Level = .05 Assume: Effect Size Power Sample Size

Control
Group
Response
Rate =

Detect
Increase in
Treatment
Group at
Least to:

With
Probability
of:

n Needed in
Each Group

1-Tailed

2-Tailed

30%

30%

40%

40%

.80

.80

280

356

1-Tailed

2-Tailed

30%

30%

50%

50%

.80

.80

73

92
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d. Some additional considerations

For a fixed sample size and a given effect size or difference you want to
detect, maximum power occurs when the event rate is about 50%. So to
maximize power it may sometimes be wise to select a group for study
that is likely to have the events of interest. For example, if you want to
study the effects of a beta-blocker drug on preventing heart attacks, you
could get “more power for the money” by studying persons who have
already had one heart attack rather than healthy persons, since the
former are more likely to have another event (heart attack). Of course
you might then be looking at a different question, the effect of beta-
blockers on survivors of heart attack, (which would be a secondary
prevention trail) rather than the effect of beta-blockers in preventing
the first heart attack.(a primary prevention trial). Sometimes a primary
prevention trial gives a different answer than a secondary prevention
trial. You may be able to intervene to prevent disease among people not
yet suffering from the disease, but your intervention may have little ef-
fect on someone who has already developed the disease. Clearly judg-
ment is required.

6.10 How to Calculate Sample Size for the Difference
Between Two Proportions

You need to specify what you think the proportion of events is likely to
be in each of the two groups being compared. An event may be a re-
sponse, a death, a recovery—but it must be a dichotomous variable.
Your specification of the event rates in the two groups reflects the size
of the difference you would like to be able to detect.

Specify:
p1 = rate in group 1; q1 = 1 – p1; alpha = significance level

p2 = rate in group 2; q2 = 1 – p2;  power

n
p q p q

p p
f alpha power=

+
−

×
( ) ( )

( )
( )1 1 2 2

2 1
2 ,
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The values of f  (alpha, power) for a two-tailed test can be obtained
from the table below.

Values of f (alpha, power)

.95 .90 .80 .50

.10 10.8 8.6 6.2 2.7Alpha
Significance

Level .01 .05 13.0 10.5 7.9 3.8

.01 17.8 14.9 11.7 6.6

Note: n is roughly inversely proportional to (p2 – p1)
2.

Example. Suppose you want to find the sample size to detect a differ-
ence from 30% to 40% between two groups, with a power of .80 and a
significance level of .05. Then,

p1 = .30; q 1 = .70;     alpha = .05
p2 = .40; q 2 = .60;     power = .80

f(alpha, power) = 7.9 from the table

n=
+
−

× =
( )( ) ( )( )

( )

. . . .

. .
.

30 70 40 60

40 30
7 9 356

2

You would need 356 people in each group to be 80% sure you can de-
tect a difference from 30% to 40% at the .05 level.

6.11 How to Calculate Sample Size for Testing the
Difference Between Two Means

The formula to calculate sample size for a test of the difference between
two means, assuming there is to be an equal number in each group, is

n k
MD

number in each group= × =2 2

2
σ

( )
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where σ2 is the error variance, MD is the minimum difference one
wishes to detect, and k  depends on the significance level and power de-
sired. Selected values of k  are shown on the next page. For example, to
detect a difference in mean I.Q. of 5 points between two groups of peo-
ple, where the variance = 162 = 256, at a significance level of .05 and
with power of .80, we would need

n = × =7 849 2 256

5
161

2

. ( )

( )
people

Significance Level Power k

.05 .99
.95
.90
.80

18.372
12.995
10.507
7.849

.01 .99
.95
.90
.80

24.031
17.814
14.879
11.679

in each group, or a total sample size of 322. This means we are 80%
likely to detect a difference as large or larger than 5 points. For a 10-
point difference, we would need 54 people in each group.

A common set of parameters for such sample size calculations are
α = .05 and power = .80. However, when there are multiple compari-
sons, we have to set α at lower levels as described in Section 3.24 on the
Bonferroni procedure. Then our sample size would need to be greater.

If we are hoping to show that two treatments are equivalent, we
have to set the minimum difference we want to detect to be very small
and the power to be very, very high, resulting in very large sample sizes.

To calculate values of k  that are not tabulated here, the reader is r e-
ferred to the book Methods in Observational Epidemiology  by Kelsey,
Thompson, and Evans for an excellent explanation. There are com-
puter programs avaiable to calculate power for many different situa-
tions. An excellent on is: NCSS (National Council for Social Studies
statistical software) which can be obtained by going to the website:
www.ncss.com.
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Chapter 7
MOSTLY ABOUT QUALITY OF LIFE

The life which is unexamined is not worth living.
Plato, Dialogues

428–348 B.C.

I love long life better than figs.
Shakespeare

(Anthony and Cleopatra)

The two quotes above illustrate how differently
people view the quality of their lives and how difficult it
is to pin down this concept.

A welcome development in health care research is the increasing atten-
tion being paid to quality of life issues in epidemiological studies and
when evaluating competing therapies. A key aspect is the measurement
of the effects of symptoms of illness, as well as of the treatment of these
symptoms, on well-being, which is a subjective and relative state.
Therefore, it is quite appropriate that measurement of improvement or
deterioration in quality of life be based on the patient's perception and
self-report. A person who has had severe and disabling angina may
perceive improved well-being as a result of treatment if he can walk
without pain, whereas a young ski enthusiast may experience marked
deterioration if he is unable to ski. For that reason, in studies on this
issue the individual often serves as his or her own control, and the
measures used are change scores in some quality of life dimensions
from before to after treatment. However, it remains important to have
an appropriate control group to compare the changes, because people
show changes in these dimensions over time that may be unrelated to
the particular treatment being evaluated.

The principles and techniques described in this book apply to r e-
search in any health-related field. However, there are certain analytic
methods that are particularly appropriate to investigations concerning
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psychological or emotional states. The primary principle is that if it is to
be scientific research, it must adhere to scientific standards, which
means that first of all, the variables of interest must be quantified.
Fortunately, almost any concept related to the health fields can be
quantified if one is ingenious enough.

7.1  Scale Construction

The scales used to measure quality of life dimensions reflect the degree
of distress with particular symptoms or psychological states as well as
degree of satisfaction and general well-being. There are many such
scales available, which have been well constructed and tested on differ-
ent populations. Sometimes, however, investigators find it necessary to
construct their own scales to fit particular circumstances.

There are three characteristics of such scales that are important:
reliability, validity, and responsiveness.

7.2  Reliability

Reliability is the ability to measure something the same way twice. It
rests on the assumption that a person's score on a scale or a test is
composed of his true (but unknown) score plus some component that
is subject to variation because of error (by which we mean random
variability).

Reliability of a scale is related to its repeatability, or how close the
responses are on two administrations of the scale. To measure how
close they are we can calculate the correlation coefficient between the
two administrations of the scale to the same subjects. But often we can't
give the same scale to our patients twice under exactly the same cir-
cumstances, since in reality a patient responding twice to the same
questions would respond differently either because something has in-
tervened between the two occasions or because he remembered the pre-
vious responses or just because there is inherent variability in how one
feels. The next best thing would be to give two equivalent scales to the
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same group, but that has its problems as well. How do we know the two
scales are really equivalent?

Fortunately, there are various measures of what we call “internal
consistency” that give us the reliability of a scale or test. The most
common one is called Cronbach's alpha. There are many software
packages for personal computers that readily calculate Cronbach's a l-
pha, including SPSS, SAS, STATA, and many others. Thus, it is not
necessary to calculate it yourself, but the following explanation indi-
cates what it really means and how to interpret it.

α = ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥

k

k -1

variance of total scale sum of variances of individual items

variance of total scale

–

Variance is the standard deviation squared. Section 3.4 shows how
to calculate it. (When we talk about variance here, we actually mean the
population variance, but what we really use are estimates of the popu-
lation variance that we get from the particular sample of people on
whom we develop the test or scale, since obviously we can't measure the
entire population.)

This formula is really a measure of how homogeneous the scale
items are, that is, to what extent they measure the same thing. If you
have a scale that is composed of several different subscales, each
measuring different things, then the Cronbach's alpha should be used
for each of the subscales separately rather than the whole scale. Cron-
bach's alpha gives the lower bound for reliability. If it is high for the
whole scale, then you know the scale is reliable (repeatable, highly cor-
related with the “true,” but unknown, scores). If you get a low alpha
for the whole scale, then either it is unreliable or it measures several
different things.

Reliability can also be looked upon as a measure of correlation,
and in fact it does reflect the average correlation among items of a
scale, taking into account the total number of items. Another way to get
reliability is from the Spearman–Brown formula, which is
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k average correlation among all items

1+ k 1  average correlation among all items
 =  

k r
1+ k 1 r

average

average

( )

( )

( )

( )( )– –

As this formula indicates, a longer test or scale is generally more reli-
able if the additional items measure the same thing. On the other hand,
shorter scales are more acceptable to patients. An alpha above .80 is
considered very good, and sometimes subscales are acceptable with a l-
pha over .50, particularly when there are a large number of subjects
(over 300), but it should be considered in the context of the other psy-
chometric qualities of the scale.

There are other measures of reliability as well. Psychometrics is a
specialized and complex field and there are many excellent books on
the subject, for example, Health Measurement Scales by Streiner and
Norman.

7.3 Validity

Validity refers to the degree to which the test measures what it is
supposed to measure. An ideal situation would be one in which there
is some external criterion against which to judge the measuring in-
strument, a “gold standard.” For example, if it could be shown that
anxiety as measured on one scale correlates better with some objectively
definable and agreed upon outcome than anxiety measured on a sec-
ond scale, one could say the first scale is more valid. (This is called
“criterion validity.”)

Unfortunately, in quality of life issues there are generally no exter-
nal criteria. A person may feel he or she is miserable, but be function-
ing at a high level. The very idea of quality of life is conceptually sub-
jective. Whose quality of life is it anyway?

Therefore, we often must rely on content validity, which is a blend
of common sense and technical psychometric properties. If we want to
know if someone feels depressed we might ask, “Do you feel sad a
great deal?” rather than, “Do you feel athletic?”  However, even that is
not so simple, since what someone who is not an expert on depression
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might consider overtly irrelevant, like sleep disturbances, is one of the
most powerful signs of depression.

Of course, if there is an external criterion against which to validate
a scale, it should be used. But even content validity may be made more
objective, for instance by forming a group of experts to make judg-
ments on the content validity of items. To test the agreement between
judges, the kappa coefficient may be used, as described in Section 3.3.

7.4 Responsiveness

Responsiveness of a scale is a measure of how well it can detect
changes in response to some intervention. Responsiveness, or sensitiv-
ity of a scale, can be assessed in several different ways and there is no
consensus as to which is the best. Some related concepts are described
below, which pertain to the situation when you are looking at change
from pre- and posttreatment measures.

(1) The use of change scores (pre-post) is appropriate when the vari-
ability between patients is greater than the variability within pa-
tients. In general, change scores can safely be used if

σ
σ σ

between patients

between error  +  
  .

2

2 2 0 5≥

σ2
between patients and σ2

error  can be obtained from an analysis of variance
of scores of a group of patients who have replicated measures, so
that you can estimate the variance due to error.

(2) A coefficient of sensitivity  to change due to a treatment is

σ
σ σ

change

change error +  

2

2 2
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To get the σ2
error , one needs to do an analysis of variance of repeated

measures on the same subjects. Computer programs are available.
Detailed explanations of this appear in more advanced texts.

(3) Effect size is simply the change in the scale from before to after
treatment, divided by the standard deviation at baseline. The stan-
dard deviation is an index of the general variability in scores
among the group of people in the study. One can measure the
magnitude of the average change in scores after some treatment by
determining what percentage of the “background variation” that
change represents. Effect size =

mean change score

standard deviation of baseline or pretreatment  scores( )

(4) A measure of responsiveness proposed by Guyatt et al.25 is

mean change score

standard deviation of change scores for “stable subjects”

“Stable subjects” are hard to define, but what this suggests is that a
control group that doesn't get the intervention or gets placebo may
be used. Then one can use the standard deviation of the change
scores in the control group as the denominator in the term above.

The variabili ty of the change scores in the control group (or in a
group of stable subjects) can be looked at as the “background vari-
ability” of changes and the measuring instrument is responsive to
the degree it can detect changes above and beyond this background
variability.

(5) When evaluating change due to treatment, one should always have
a control group (i.e., a no-intervention or placebo group) for com-
parison, since change can occur in control patients as well, and the
question of interest is whether the pre- to posttreatment change in
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the treatment group exceeds the “background” change in the con-
trol group. If you use effect size as a measure, then you should
compare effect size in the treatment group with effect size in the
control group.

A numerical example of these concepts is provided in Appendix G.

7.5  Some Potential Pitfalls

a. Multiplicity of variables

Quality of life research often deals with a vast quantity of variables. Let
us say an investigator is examining the effects of a drug to treat hyper-
tension and comparing it with placebo. The investigator may have sev-
eral hundred items to assess various physical and psychological symp-
toms and side effects. If one were to compare the two groups by t-test
on each of the items, at the p = .05 level of significance, one would ex-
pect that roughly 5% of these tests would produce a significant result by
chance alone. The exact probability is difficult to determine, since some
of these comparisons would be correlated by virtue of the fact that the
same patients are responding to all of them, that is, the responses are
not independent. But in any case, if the investigators pick out just the
significant items and conclude that there are effects of the drug, they
may be committing type I errors, that is, rejecting the null hypothesis
incorrectly.

That is why it is important to use scales that measure particular
constructs, or to group items in a clinically meaningful way. For ex-
ample, one might wish to measure depression, anxiety, hostility, well-
being (each of which consists of multiple items). On the other hand,
certain drugs may be related to very specific symptoms, such as night-
mares, and this might need to be assessed by a single item that asks
about the frequency of nightmares.

The point is that quality of life research should generally be driven
by some specific hypotheses. Otherwise it becomes a “fishing expedi-
tion” that just fishes around for anything significant it can find. It
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should be noted that “fishing expeditions” may be useful to generate
hypotheses that then need to be tested in a different study.

b. Generalization

Another important issue is the extrapolation of results to populations
other than the one from which the study sample was drawn. Quality of
life effects may be different in men than in women, in younger than in
older people, and may differ by ethnic and cultural groups. One should
be careful in making generalizations.

c. Need for rigorous standards of research

Some people consider quality of life measures “soft.” What they gener-
ally mean is that they think such measures are subjective, variable, and
perhaps meaningless. That is nonsense, and to the extent it is true in
some studies it reflects the inadequacies of the researcher, not of the
subject matter. These measures should be subjective from the patient's
perspective, since they reflect the patient's subjective perception of well-
being or distress. It is the researcher who should not be subjective, and
who need not be if he follows the principles of research. The variability
in quality of life measures is no greater than in many physiologic
measures, and, in any case, is part of the essence of some quality of life
constructs. As for meaning, that is a philosophical issue, not a scien-
tific one. From the scientific viewpoint, the “meaning” should be de-
fined operationally. Quality of life research should adhere to the prin-
ciples of all good research and the general approach is the same as for
any scientific investigation:

(1) formulate a testable hypothesis;
(2) quantify the dependent variable (or variables);
(3) select a study design that can answer the question you've posed;
(4) quantify the independent variables;
(5) control for potential confounders (through study design and/or

data analysis);
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(6) plan for a sample size that will give you enough power to detect
an effect size of interest;

(7) try to ensure that you minimize systematic bias;
(8) collect the data, paying much attention to quality control;
(9) analyze the data using appropriate statistical techniques; and

(10) make inferences consistent with the strengths and limitations of
the study.
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Chapter 8
MOSTLY ABOUT GENETIC EPIDEMIOLOGY

Let us then suppose the mind to be, as we say, white paper (tabula
rasa), void of all characters without any ideas; how comes it to be
furnished? Whence comes it by that vast store, which the busy and
boundless fancy of man has painted on it with an almost endless vari-
ety?....To this I answer, in one word, From experience: in that all our
knowledge is founded....

John Locke
An Essay Concerning Human Understanding (1689)

8.1 A New Scientific Era

We are a long way from believing that the mind is a “tabula rasa,” a
blank slate. We know now that much is in fact innate, i.e. under genetic
influence. The purpose of this chapter is to help those who wish to read
the rapidly expanding literature in genetic epidemiology. Thus, it is an
overview of the basic designs and statistics used in this area; it is not
comprehensive, nor is it highly technical. Appendix H provides basic
descriptions and definitions of the intracellular process under control
of genes, for those unfamiliar with the area.

The focus of epidemiological research has evolved as parallel pro-
gress has been made in other fields of medicine and basic science. I n
the era when infectious diseases were rampant, epidemiology was con-
cerned with identifying the sources of the infection and methods of
transmission, largely through fieldwork. As the infectious agents were
discovered, as sanitation and health status improved, chronic diseases,
such as heart disease and cancer, became the leading causes of death
and disability in the developed world, and came to be the foremost tar-
gets of epidemiological research. (Now that new infectious diseases are
once again emerging, this part of epidemiology is again gaining
prominence.)

The objective of chronic disease epidemiology was to identify risk
factors for these diseases. This part of the story has been a great public
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health success. We now know, because of epidemiological studies, what
the major modifiable risk factors are for cardiovascular disease: hy-
pertension, high cholesterol and low HDL, smoking, overweight, and
inactivity. Our challenge now is to find ways to make the lifestyle
changes in the population, which will further lower the rates of cardio-
vascular disease. We also know many of the exposures related to can-
cer, but not as comprehensively as for heart disease.

At this scientifically historic time, as science is fully entering into
the era of genomics and proteomics , epidemiology is entering into a
new phase of research activity: molecular epidemiology . This is the
search for blood or tissue biomarkers and genetic polymorphisms
(variants) that are associated with, or pre-dispose to disease. Why is
this different from any other risk factor investigated in epidemiology?
In many ways it isn’t, especially with regard to the blood biomarkers,
but in genetic epidemiology there are study designs and statistical
analysis methods that are quite different. A really new aspect of mo-
lecular and genetic epidemiology is the true collaboration of basic sci-
entists, clinicians and epidemiologists. For too long the disciplines have
gone their separate research ways and scientists read mostly the scien-
tific journals in their own field. But molecular epidemiology cannot
fruitfully proceed without the interface of laboratory scientists and
population researchers.

8.2 Overview of Genetic Epidemiology

Genetic epidemiology seeks to identify genes related to disease and to
assess the impact of genetic factors on population health and disease.
Here is an overview of the strategy often used to study genetic determi-
nants of disease. First we may want to determine if the disease runs in
families . If it is not familial, it is not likely to be heritable; if it is famil-
ial, it may or may not be due to genetic factors (environments run in
families also). Next, we want to see if genes contribute to the familial
transmission. One method for determining this is by studying twins
(described in Section 8.3). If we determine the disease is heritable, we
would want to localize and identify the genes involved.



Mostly About Genetic Epidemiology 173

As a first step, we may want to find out where the genes that con-
tribute to the disorder are located. This can be done by genome scan
linkage studies of individuals affected with the disease and their fami-
lies (described in Section 8.4). Linkage studies may identify regions on
the chromosome that are likely to harbor the disease genes. Once we’ve
identified one or more such regions, we may look to see what genes are
known to reside in those regions. We can then test these genes using
association studies in unrelated individuals  (described in Section 8.6) to
determine whether any variants (also called alleles) of these genes are
associated with the disease.

So, there are a variety of designs and statistical tests that can be
used to define the genetic basis of a disease, including: 1) twin studies
to determine if the disease has a heritable component; 2) linkage stud-
ies  to identify and locate regions of chromosomes containing genes in-
volved in the disease; and 3) association studies to determine whether
specific genetic variants are associated with the disease, to examine how
they interact with the environment, and to determine how they affect
population health. We will limit the discussion to some pretty simple
models that will give the flavor of the topic. Readers interested in more
depth are referred to the many more technical writings on the subject,
but particularly to the excellent Special Report on genetics by Ellsworth
and Manolio.28,30,31

8.3 Twin Studies

To establish a genetic influence on disease, we may look to see if it runs
in families. But something that is familial is not necessarily hereditary.
For example: do obese parents have obese children because of genetics
or because of nutrition and activity levels that are transmitted from the
parents to the children? What we want to know is whether and to what
extent the phenotype (what we observe in the person, for example, obe-
sity) is affected by genetic factors.

One way to assess the influence of heredity is from studies of twins.
Identical twins (monozygotic—coming from the same fertilized egg)
share 100% of their genes, while fraternal twins (dizygotic—coming
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from two fertilized eggs) share only 50%, just as non-twin siblings do.
One way to estimate the strength of genetic influences is by a heritabil-
ity index h2 . This is commonly defined as twice the difference between
the correlation for that trait among monozygotic twins minus the cor-
relation in dizygotic twins or:

h2= 2(rmz  – r dz)

Consider blood pressure. If variation in the condition or trait under
investigation were completely attributable to genetic variation, then each
member of a monozygotic twin pair would be equally affected (each
member would have the same blood pressure) and the correlation be-
tween monozygotic twins would be 1.0; the correlation in dizygotic
twins however, would be .50.

In this case, h2  would be 2(1- 0.5) = 1.0 or 100%. If the condition is
completely not heritable in the population, then r mz  = r dz and h2 = 0.
Since diseases and traits are generally partially heritable, h2 lies some-
where between 0 and 1.0.

If we are talking about continuous variables, we can think of heri-
tability in terms of correlation coefficients. If we are talking about cate-
gorical variables, we may speak of concordance rates, where

h
monozygotic twins concordant for the disease of dizygotic twins concordant

of dizygotic twins concordant

2

1
=

% – %

– %

Some reported approximate estimates32,33,34,35  of heritability are: 1.0 for
Huntington’s disease (this is because Huntington’s disease is a single
gene disorder, inherited in a dominant mode of transmission, and fully
penetrant—this term is defined toward the end of this chapter); .60 for
alcoholism; .40 for the personality trait of conscientiousness; .35 for
colorectal cancer;.26 for multiple sclerosis; and .80 for schizophrenia.

It is important to remember that heritability doesn’t measure how
much of an individual’s disease is attributable to genetics; rather it tells
us what proportion of the population’s variability in the phenotype is
the result of variation in the genes in the population. So it is a measure
applicable to a population, not to an individual. If you have people liv-
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ing in exactly the same environment, then any variation you encounter
in the phenotype must be due to genetic factors, since there is no envi-
ronmental variation. In such a case, if all environmental factors are
constant for the population, heritability would be 100%. So there are
some limitations to this measure, but it does give us an idea to what
extent genetic variation contributes to phenotypic variation in a popula-
tion. However, heritability tells us nothing about what genes are r e-
sponsible for that variation, what chromosomes they are on, where on
the chromosome they are located, or what polymorphisms are involved.

8.4 Linkage and Association Studies

If we know a disease is heritable, we can now turn to the task of actu-
ally identifying the genes that are involved. Most disorders that are
studied by epidemiologists (e.g. cardiovascular diseases, psychiatric dis-
orders, common forms of cancer) are considered “complex” disorders.
That is, unlike single-gene or Mendelian disorders, such as cystic fi-
brosis or Huntington’s disease, these diseases are thought to result
from the contribution of several or many genes interacting with envi-
ronmental risk factors. That can make identifying the effect of an indi-
vidual gene quite a difficult task. The effect of a particular allele within
that gene may be quite small. It is a bit like looking for the proverbial
needle in the haystack. Nevertheless, genes contributing to diseases are
being discovered and there are certain strategies that are employed in
the search.

Where in the genome do we look for the genes that confer suscepti-
bility to the disease? One way to answer this question is to use genetic
linkage analysis .

a) Linkage analysis relies on the phenomena of crossing over and
recombination that occur during the process of meiosis when
the sex cells (sperm and egg) are formed. Each person has two
copies of each of the 23 chromosomes that make up the ge-
nome: one copy is inherited from the mother and one from the
father. During the formation of sperm and egg cells, these 23
chromosome pairs line up and exchange segments of genetic
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material in a process known as crossing over. This recombi-
nation occurs at one or more places along the chromosome.
The closer two loci are on a chromosome, the less likely a re-
combination event will occur between them and so the more
likely they will be inherited together. Loci that tend to be co-
inherited are said to be genetically linked. We can use this fact
to estimate the distance between two genetic loci or markers (a
genetic marker is a piece of DNA whose chromosomal location
is known). The physical distance between two markers is in-
versely related to how frequently they are co-inherited across
generations in a family. 

b) The distance between two loci is sometimes measured in centi-
Morgans. A centiMorgan (cM) is a unit of distance along a
chromosome, but not in the ordinary sense of physical dis-
tance. It is really a probability measure which is a reflection of
the physical distance; it reflects the probability of two markers
or loci being separated (or segregated) by crossing over during
meiosis. If the two markers are very close together, they won’t
separate (we say they are “linked”); if they are far apart, they
are likelier to cross over and the genetic material gets recom-
bined during meiosis . Then this recombined DNA gets trans-
mitted to the offspring. Two loci are one centimorgan apart if
the probability that they are separated by crossing over is only
1% (once in a hundred meioses). It has been estimated that
there are about 1 million base pairs in a 1cM span. Loci that
are far apart, say 50 cM, will be inherited independently of each
other, as they would be if they were on different chromosomes.
The purpose of linkage studies is to localize the disease-
susceptibility gene to be within some region on the chromo-
some .

c) So we might begin our search for a disease gene by collecting
families affected by the disease and performing a linkage
analysis using markers spaced at intervals (say 10 cM apart)
across the entire genome. This is known as a whole genome
scan.  If we find a marker that appears to be co-transmitted
with the disease, we would have evidence that the marker is
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genetically linked to a gene for the disease. In other words,
there is likely to be a gene for the disease in the same region as
the linked marker (there’s a pony in there somewhere.∗)

d) Having found a chromosomal region linked to the disease, we
might try to narrow the region down by genotyping and testing
additional markers within that region (say at 1 cM intervals).
However, even this relatively small region may contain many
genes.

e) Our next step might be to screen the genes that are known to
reside in this region. We would be particularly interested in
genes that have a plausible connection to the disease of interest
(these would be good “candidate genes”). For example, if we
are studying diabetes, genes that make proteins involved in glu-
cose metabolism would be important “candidate genes.”

f) Now we can see if any particular alleles (variants) of the genes
in that chromosomal region are associated with the disease.
This can be done by:

1. Association studies using case-control methods in unre-
lated people, examining whether an allele is more common
in cases than controls (described in Section 8.6);

2. Association studies in families  to see whether an allele is
being transmitted more commonly to cases than expected
by chance (described in Section 8.7).

∗ This refers to the story of a pair of twins. One was the optimist and one the
pessimist. The psychologist tried to cure them of their respective distortions
and so he put the pessimist twin into a room full of toys. The child cried in-
consolably, explaining that he was crying because he would never be able to
select a toy to play with from among this whole big heap. The psychologist
put the optimist twin in a room full of horse manure, and when he came
back half an hour later, the child was laughing and clapping his hands with
joy. “How come you’re so happy here”, asked the psychologist, and the op-
timistic twin replied, “I figure with all this horse manure, there’s got be a
pony in there somewhere.”



178 Biostatistics and Epidemiology: A Primer for Health Professionals

So linkage analysis tells us that a particular marker location is
near a disease susceptibility gene; association analysis tells us that a
particular allele of a gene or marker is more commonly inherited by
individuals with the disease.

8.5 LOD Score: Linkage Statistic

The classic statistic used to evaluate the strength of the evidence in fa-
vor of linkage of a genetic marker and disease susceptibility gene is the
LOD score (the log10 of the odds in favor of linkage). It will be de-
scribed in principle only, to help in interpretation of epidemiological
articles dealing with genetics. The actual calculations are complex and
require special program packages.

The principle underlying the LOD score is described in the previ-
ous section: if we have two loci—say, a marker and a disease
gene—the closer they are on a chromosome, the lower the probability
that they will be separated by a recombination event during meiosis and
the more likely they will be co-inherited by offspring. 

The probability of recombination, called the recombination frac-
tion, is denoted by the symbol θ and depends on the distance between
the gene and the marker. If there is no recombination and the gene
and marker are completely linked, then the recombination fraction is 0.
The maximum value of θ is .5 (if gene and marker were independently
inherited, then the probability that the marker was transmitted but not
the gene, equals the probability that gene was transmitted but not the
marker, equals .50). 

So if you want to know if there is linkage, we have to estimate how
likely it is that θ is less than .5, given the data we have observed. We use
the likelihood ratio for this, which as you recall from Chapter 2 is the
ratio of the probability of observed symptoms, given disease divided by
the probability of observed symptoms given no disease. In this case:

LR =
Probability observed inheritance data, given linkage

Probability observed inheritance data, given no linkage
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The null hypothesis here is no linkage (or recombination fraction
θ = .5) and the alternate hypothesis is linkage (or θ <.5). If we reject
the null, we “accept” the alternate hypothesis. The test statistics used to
see if we have sufficient data to conclude linkage is the LOD score
which is the log10 (LR.). For Mendelian (single gene) disorders, a lod
score of 3 has traditionally been the threshold for declaring significant
linkage, although for complex disorders higher thresholds (3.3 – 3.6)
have been recommended. A LOD score of 3.0 indicates 103 odds in fa-
vor of linkage compared to no linkage, i.e. 1000:1 odds in favor of
linkage.

For complex reasons beyond the scope of this book (but described
in the references at the end), a LOD score can be translated into prob-
ability by multiplying it by the constant 4.6: LOD x 4.6 is distributed as
chi-square with 1 degree of freedom. (The 4.6 is 2 times the natural log
of 10.) Thus a LOD of 3.0 is equivalent to a chi-square of 3 x 4.6
=13.82, and corresponds to p = .0002. The inheritance data for linkage
analyses can come from family pedigree studies, from sibships or other
family groups.

LOD score linkage analysis is sometimes referred to as “para-
metric” linkage analysis because it requires that we specify certain
parameters (e.g. disease and marker allele frequencies, recessive vs.
dominant mode of inheritance, penetrance of the disease gene). When
these parameters are known or can be approximated, parametric LOD
score analysis is the most powerful method of linkage analysis. This
may be true for Mendelian (single gene) disease, but for many complex
disorders, these parameters are not known. “Nonparametric” linkage
methods (known as the allele-sharing approach) are often used to
study complex disorders because they do not require knowledge of the
mode of inheritance or other genetic parameters. There are a number
of statistics available, described in the more advanced texts.

8.6 Association Studies

Compared to linkage analysis, association studies are more closely akin
to traditional epidemiological studies. They may be used to evaluate a
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candidate gene we are investigating when previous data, generally from
linkage studies, have suggested that a particular gene is involved and
maybe even a particular variant in the gene. In these studies, investi-
gators are interested in finding whether there is any association be-
tween a particular allele of a polymorphic gene and the disease in
question. (A polymorphism is a variation at a particular locus on the
chromosome). For the purposes of this discussion, we will assume that
the polymorphisms we are looking at are SNPs (single nucleotide po-
lymorphisms) or variants in a single one of the bases A T C G at a
particular locus (See Appendix H for details on SNPs).

So let us say at a particular SNP some people have the allele A and
other people have the allele G. We want to know if people with the dis-
ease are more likely to have say, the A allele than the G allele. We can
do case-control studies of association by taking cases who are affected
with the disease and unrelated controls who are not. We then test sta-
tistically whether the proportion of affected individuals who have allele
A is greater than the proportion of controls who have allele A.

If the unit of observation is the person, we can analyze the data by
genotype (i.e. compare proportions of cases and controls with one allele
from the mother and one from the father resulting in their genotype of
AA, AG, vs GG,). We can use ordinary statistical tests of the differences
between proportions, or multiple logistic regressions (see Section 4.16)
to determine the odds ratio connected with the allele in question, and we
can test for gene-environment interactions by including an interaction
term of the presence of the allele and some environmental factor, such
as smoking. Association studies can be more powerful than linkage
analysis for detecting genes of modest effect, making them an attractive
approach for studying complex disorders which are expected to involve
multiple genes of relatively small individual effect.

A potential problem related to such studies is the choice of control
groups. Ethnic differences in the prevalence of the allele, which may be
unrelated to the presence of disease and which have arisen because the
allele has been transmitted across generations within ethnic groups
may confound our results. This phenomenon is referred to as “popu-
lation stratification.” Therefore, first of all, we would need to know
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about the background distribution of these alleles in different ethnic
population subgroups.

For example, let us say the A variant is more common in Cauca-
sians and the G variant is more common in African Americans. (Such
differences between groups can happen because of different progeni-
tors in the different groups.) If it happens that our disease group has
more Caucasians and our no-disease control group has more African
Americans, then we might find that allele A is more common among
those with disease than in those without disease, but it might really just
be a reflection of the fact that we had more Caucasians cases than
controls and the Caucasians are more likely to be carriers of the A al-
lele. So we would have a false-positive finding because of the ethnic
composition of the two groups. But ethnicity is not so simply deter-
mined, because both Caucasians and African Americans have multiple
ethnic origins and may have different progenitors, and different pat-
terns of alleles normally occurring.

Thus, if we find an association between a particular allele and the
disease we are studying, it may be for one of four reasons: (1) it could
be a false positive due to chance (Type I error); (2) it could be a false
positive due to confounding because of population stratification; 3) it
may be that the allele is in “linkage disequilibrium” with the true dis-
ease allele, meaning that the allele we found more frequently in cases
than in controls, is located physically close enough to the true disease
allele that the two alleles tend to be inherited together and co-occur in
affected individuals; 4) there really is a true causal association of the
allele we studied and the disease. (As we said before, genetics—and
life—are not simple.)

8.7 Transmission Disequilibrium Tests (TDT)

A statistical test of both linkage and association is the transmission
disequilibrium test . This is a family-based association test which avoids
confounding due to population stratification by examining the trans-
mission of alleles within families. If a marker and a polymorphism in
a disease-susceptibility gene are in linkage disequilibrium, it means that
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they are so tightly linked that specific alleles of the marker tend to be
inherited togther with specific alleles of the gene. Let's again consider a
SNP at which there are two possible alleles, A and G. A parent who is
heterozygous at this SNP (i.e. has genotype AG) can transmit either an
A or a G to the child. Under the null hypothesis of no linkage and no
association, the probability of transmitting either of these alleles is 50%.
If we observe transmission of the A allele significantly more often than
chance expectation (i.e. more than 50% of the time) to the affected
offspring, then we conclude that the A allele is associated with the
disease.

The basic statistics are fairly straightforward. The unit of analysis
is a  transmission of an allele . Here is an example using trios. A trio is
an affected offspring and both parents. There are two transmissions
possible of an allele in a particular locus—one from the mother and
one from the father. In the diagram below we construct a 2x2 table and
count the number of transmitted alleles that belong in each cell of the
table.

Trio 1: since the affected child has two AA alleles in the locus under
consideration, she had to have received an A from each parent;
thus we see that the father transmitted his A allele and not his G
and the mother also transmitted her A allele and not her G, indi-
cating that these two transmissions belong in cell b which describes
the transmission of an A and not a G allele.

Transmitted Allele

Not
transmitted Allele G Allele A

Allele G Cell a Cell b = 2

AG AG

AA

Allele A Cell c Cell d
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Trio 2: Here one transmission was of an A and not a G and the
other was of a G and not an A. (We don’t know which was from
which parent, but we do know that 1 transmission is described by
cell b and the other by cell c.)

Transmitted Allele

Not
transmitted

Allele G Allele A

Not G 1 (mother or father)

AG AG

AG

Not A 1 (mother or father)

Trio 3: Here, the A in the child had to have come from the father
since that was all he had to transmit, so he transmitted an A allele
and also did not transmit his other A allele; thus that transmission
belongs in cell d. The mother transmitted her G allele and not her A
allele and so that transmission belongs in cell c.

Transmitted Allele

Not
transmitted Allele G Allele A

Not G

AA AG

AG

Not A 1 (mother) 1 (father)

Imagine we have 120 such trios. We would now combine the data
from the 240 transmissions among the 120 trios by adding the num-
bers in each cell into a summary table, as shown in the example below:

Transmitted Allele

Not
transmitted Allele G Allele A

Not G 65 90

Not A 50 45
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and calculate the test statistic TDT as the quantity:

( )

( )

( )b c

b c

−
+

= − =
2 290 50

140
11 43.

which is distributed as χ2, with one degree of freedom, and since it is
more than 3.84, we can reject the hypothesis of no linkage and con-
clude there is evidence of linkage and association. The TDT is really a
McNemar’s test (described in Section 3.2), analogous to matched case-
control analysis, where controls are untransmitted alleles, rather than
persons.

Note that any transmissions that land in the a or d cell are non-
informative. The test statistic TDT only uses information from the b
and c cells. Thus, only parents who are heterozygous (having an A and
G) are informative. Since we start out with affected children identified
by phenotype, we don’t know whether the parents are heterozygous and
must genotype all the parents in our collection of trios even though
some will turn out not to be informative. Also, in our examples of trios,
the affected children each had at least one A allele, but it possible for
the child to be affected and have a GG genotype because there may be
other genes that confer disease suscpetibility.

The sample size required for sufficient power to detect linkage and
association through the TDT is dependent on many factors, including
the marker and disease allele frequency, the recombination fraction or
linkage disequilibrium between the marker and the disease allele and
the effect size of the disease allele. A genetic statistician is best able to
calculate the sample size and should be consulted before any such
work is under taken.34

The TDT has been extended to be applicable to cases where one or
both parents’ DNA is not available, to sibships and to other family
groups, as well as to quantitative traits.

To make it more concrete, imagine a study of the genetics of
schizophrenia. Let’s say that previous studies have linked schizophre-
nia to a region on chromosome 22 and that there is a gene in this r e-
gion that we consider a strong candidate gene because it is involved in
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the production of a neurotransmitter thought to be involved in the dis-
ease. We further know that there is a SNP in this gene that affects the
amino acid sequence of the protein made by the gene. We want to test
whether this SNP is associated with schizophrenia. We have a sample
of 200 trios consisting of an offspring with schizophrenia and both
parents. Each parent can transmit one of his or her two alleles at this
locus to the affected offspring. For each trio, we can construct a 2x2
table and count the number of transmitted alleles that belong in each
cell of the table, and then combine the tables to get a summary table
that we use to calculate the TDT statistic as shown above. If that statis-
tic is greater than 3.84 we can reject the hypothesis of no linkage at the
.05 level significance.

8.8 Some Additional Concepts and Complexities of Genetic
Studies

How do we select candidate genes? One strategy is to look at the bio-
logical pathway involved in the disease, consider a relevant protein in
that pathway, and explore gene polymorphisms related to that protein.
Another possibility is to look at genes within a region on the chromo-
some that is linked to the disease, even if we don’t know what these
genes actually do. Association studies look at candidate genes, but we
don’t have compelling candidates for many diseases. Technology is
available to do whole genome association scans, using association
methods to test alleles by examining  polymorphisms throughout the
whole genome. However, covering the genome in this way may require
testing many thousands of SNPs, creating a problem of multiple hy-
pothesis testing and a high probability of Type I error. (See Section
3.24.)

Haplotype analyses and haplotype maps  are promising avenues to
reduce the number of polymorphisms that have to be examined to find
disease susceptibility genes. Haplotypes are sequences of alleles along a
given chromosome. The concept of linkage disequilibrium tells us that
alleles that are physically close together may be inherited together.
These high linkage disequilibrium haplotypes, or “haplotype blocks,”
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may be conserved through generations because they are inherited as a
“block” and recent studies have shown that there is limited haplotype
diversity in the human population. It turns out that there are several
alleles within such haplotypes that characterize the entire haplotype and
it may be possible to just look at those key alleles instead of at each sin-
gle nucleotide polymorphism separately.

Among things that complicate genetic studies are the following:
It is often difficult to identify a phenotype  specifically enough. Say

we are looking for the gene for hypertension—how do we define a hy-
pertensive when blood pressure is a continuous variable? Hypertension
has been defined as being above a certain cut-point of blood pressure
based on predictions of morbidity and mortality risks associated with
different levels, but that does not necessarily correspond to some heri-
table characteristics.

Or take genes pre-disposing to heart disease. You have to define
heart disease very specifically—does it include heart failure (which may
be a different disease process); does it only include early heart attacks?
In psychiatry, diagnoses are often based on having “x” number of
symptoms out of a possible “n” symptoms, but what about people who
have “x – 1” such symptoms? The diagnostic category may not be the
heritable one. One approach to these problems of phenotype defintion
is to identify underlying components or intermediate phenotypes that
may be a more direct expression of gene effects than are the complex
diagnoses used in medicine. Examples of such intermediate phenotypes
include IgE levels in genetic studies of asthma, functional brain imag-
ing in genetic studies of schizophrenia, and lipoprotein levels in studies
of atherosclerotic heart disease.

Most diseases have complex modes of inheritance. There is not one
gene that determines susceptibility, but several, each of which contrib-
utes a modest amount and which may interact with each other. The
penetrance  of the genes varies. This means that even if you have the
disease allele you may not have the disease, either because other genes
are also involved or because specific environmental factors are a neces-
sary condition for the gene to operate. Very few genes are completely
penetrant; Huntington’s disease is one that is: people who have the
Huntington’s disease gene, will get the disease.
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You may be looking at phenotypes which are really phenocopies .
Phenocopies are phenotypes of the disease which are not caused by ge-
netic factors but rather by environmental factors. Inadvertently in-
cluding phenocopies in your analyses will act as noise and dilute any
findings related to true genetic influences.

Polymorphisms in different genes may produce very similar phe-
notypes. This is known as genetic heterogeneity . Further complications
arise from epistasis  which occurs when the expression of the disease
gene is affected by the action of another gene. So, as you can see, the
field is very complex and the statistics to evaluate whether findings of
linkage and association are more than chance are also complex.36,37,38

New technology (such as whole genome association scans) and new
analytic tools (such as “hapmaps”) are being rapidly developed to solve
such problems.

There has been a paradigm shift in science—from believing things
are simpler than they seem to understanding they are more complex
than they seem. For the last century the principle guiding scientific en-
deavor was Occam’s razor—that the most parsimonious explanation
for phenomena is the best. But as genomic and molecular discoveries
accelerate, it becomes apparent that in the biological sphere simple ex-
planations are not possible and the aim is to more accurately uncover
and explain the inherent complexity (and marvel) of life.
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Chapter 9
RESEARCH ETHICS AND STATISTICS

Morality, like art, means drawing a line someplace.
Oscar Wilde (1854–1900)

9.1 What does statistics have to do with it?

At first glance it may seem that statistics and research ethics have
nothing to do with each other. Not so! Consider why so many people
volunteer for medical research studies. In many cases it is because
there is an expected benefit. For example in cancer clinical trials often
the investigational drug is a last hope and may not be available outside
of the trial. In many cardiovascular disease studies, participants appre-
ciate the additional care and attention and are willing to try a new drug,
for example, for hypertension. And in fact, it has been shown that of-
ten, clinical trial participants live longer and do better than the general
population even if they are treated with a placebo. But what is perhaps
not sufficiently appreciated is that many, many people participate in
studies out of altruism to advance scientific knowledge. Scientific
knowledge is not advanced when a study is poorly designed, or carried
out without sufficient rigor, or not large enough to give an answer.
Proper statistics are a determinant of the ethics of a study.

A prime example is the Women’s Health Initiative (WHI), de-
scribed in Chapter 6. Postmenopausal women were asked to join a
study of hormone replacement therapy; the study would continue for
up to 12 years before the results were known and might not directly
benefit the women themselves, but they would answer the important
question of the effect of hormones on cancer, heart disease and osteo-
porosis. Many of the WHI participants took part for their daughters
and granddaughters, and they expressed pride and enthusiasm for an-
swering the questions for future generations. And indeed they did
achieve that goal—one part of WHI, the estrogen plus progestin trial
versus placebo, has already answered these important questions, with a
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startling result: estrogen plus progestin increases risk of breast cancer
and also increases heart attacks, stroke and blood clots, and dementia.
So although the treatment does show benefit with regard to colorectal
cancer and osteoporotic fractures, the overall risks outweigh the bene-
fits. This trial has changed medical practice for generations to come.

Well that brings us back to statistics. This study was able to answer
these questions because it had sufficient power to answer them. It re-
quired 16,608 women in that part of WHI to be able to detect these ef-
fects. Even if the result had been null (i.e. if it showed no difference
between the treatment and placebo groups), we could have had faith in
that result because the power was there to detect a true effect if there
really was one. As it turned out, the results were clear-cut, though un-
expected, in favor of placebo. So the point is that in order for a study to
be “ethical” it must be designed and powered well enough so that it can
answer the questions it poses. Otherwise, people who consent to par-
ticipate in the expectation that they will contribute to knowledge may
actually not be contributing because the study is poorly designed, pow-
ered or executed, and may be needlessly exposed to risk.

Note that there are certain study designs for which power consid-
erations are less relevant. Examples are pilot studies, which by defini-
tion are intended to test the feasibility of a research protocol or to
gather preliminary data to plan a full study, are exempt from the power
issue. Power considerations may also not apply to certain drug toxicity
studies (Phase I trials) or certain types of cancer trials, But certainly in
prevention trials, as well as Phase III treatment trials, power is a major
consideration in the ethics of research.

9.2 Protection of Human Research Subjects

Human subjects in medical research contribute greatly to improving
the health of people. These volunteers must be protected from harm as
much as possible. In the not-too-distant past, there were some egre-
gious breaches of ethical principles in carrying out medical research.
The world’s most appalling examples are the medical experiments car-
ried out in the Nazi concentration camps—by doctors! It defies any
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kind of understanding how educated, presumably “civilized” profes-
sionals could so have distorted their profession and their own human-
ity. But these atrocities did occur and demonstrate the horrors people
are capable of perpetrating. When these atrocities became known after
World War II, the Nuremberg trials of Nazi war criminals (including
the doctors who preformed such research) also resulted in the Nurem-
berg Code for conduct of medical research which established the basic
requirement of voluntary informed consent. Subsequently, the Decla-
ration of Helsinki, in 1964, expanded and refined the research guide-
lines, and became a world standard, which undergoes periodic revi-
sions.

The most infamous example of unethical research in the U.S. was
probably the Tuskegee Institute study of syphilis, which took place in
the south in the U.S. from 1932 to 1972. The researchers wanted to
study the natural course of syphilis. In the 1940’s antibiotics became
available which could treat this disease, but were withheld from the
participants, who were poor Black men, because an intervention to
treat the disease would interfere with this observational study. In 1972
the public became aware of this experiment and in 1974 the National
Commission for the Protection of Human Subjects of Biomedical and
Behavioral Research was established. They developed a report known
as The Belmont Report: Ethical Principles and Guidelines for the Pro-
tection of Human Subjects of Research. These guidelines are followed
by all medical schools and other research institutions that conduct r e-
search involving human participants, and they are deemed to be uni-
versal principles, cutting across cultural lines. The guidelines are based
on three basic principles: respect for persons, beneficence, and justice.

Respect for persons recognizes that people are autonomous beings
and can make their own informed choices about participating in r e-
search, free of coercion. The informed consent process is predicated on
this principle. Participants who are not able to make their own choices,
such as comatose patients, or mentally incapacitated persons, or young
children, must have special protections.

Beneficence,  or the principle of non-malfeasance, means that the
risks of the research must be kept to a minimum, the benefits maxi-
mized, and the researcher is responsible for protecting the participant.
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Justice in this context refers to a fair distribution of the risks and
benefits of research. One group of people should not be exposed to re-
search risks for the benefit of another group of people. This can get to
be a pretty complicated concept. While it may be easy to discern
breaches in certain situations—to take the most extreme example, pris-
oners of the Nazis were subjected to freezing experiments to benefit
soldiers who might have to fight under arctic conditions—it may be
more subtle in many situations and these must be examined carefully,
according to this principle.

9.3 Informed Consent

One of the most important elements in protection of human subjects is
the principle of informed consent. The study subject must freely con-
sent to be part of the study after being fully informed of the potential
risks and benefits.

There are certain elements that must be in a written consent form.
The purpose of the research must be stated; a 24-hour contact person
must be listed; there must be a description of the study procedures:
what is expected of the participant, the duration of the study, and how
much of the participant’s time it will take. The potential risks and dis-
comforts, potential benefits, inconvenience to the participants, all must
be clearly stated. There must be a statement that participation is volun-
tary and that the participant has the right to withdraw at any time and
that this will not prejudice the care of the participant. If the research
may result in need for further care or diagnostic procedures, the par-
ticipant must be told to what extent he or she is responsible for further
care and what the study will pay for. If there is any compensation to the
participants, either for expenses incurred in participating or time spent,
they must be informed of the amount. (The amount should not be ex-
cessive, as that may appear coercive.) A statement assuring confidenti-
ality and how it will be maintained must be included.

Most important, the participant must understand what he or she is
agreeing to and the consent form must be phrased in language that is
understandable, and if appropriate, translated into the participant’s
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native language. All this must be approved by the medical institution’s
IRB (or Institutional Review Board), which is generally a committee of
experts and lay people who review and must approve all research pro-
tocols before the research is started, and who monitor adverse events as
the research progresses. Different IRBs have different specific r e-
quirements that are usually posted on their web sites. Informed con-
sent is an ongoing process—it is not just signing a form at the begin-
ning of a study. The researcher has an obligation to keep the
participant informed of relevant new research that may affect his or
her decision to continue participating.

Back to the WHI—since it was believed at the time WHI was
started that hormones would protect women from heart disease, the
initial consent form stated this as a potential benefit. Potential r isks
stated in the consent form included an increase in breast cancer and
blood clots. When WHI was in progress, the HERS (Heart and Estro-
gen Replacement Study) published results indicating that for women
who already had heart disease (secondary prevention trial), hormone
replacement provided no benefit. They observed more heart attacks in
the early part of the study, with a possible late reduction, resulting in no
overall difference between the treatment and placebo groups by the end
of the study. This information was provided by a special mailing to all
women participating in the WHI hormone program for primary pre-
vention of heart disease. (Primary prevention means the study was car-
ried out in generally healthy women). Subsequently, early data from
the WHI itself indicated there was early harm with respect to heart dis-
ease. Again, the women were informed by a special mailing, telephone
and personal discussion with clinic staff. Ultimately, the estrogen plus
progestin trial was stopped after 5.2 years (instead of the originally
planned average of 8.5 years) because the excess breast cancer risk
crossed a pre-determined stopping boundary and a global index of
overall effects suggested more harm than benefit, and all women in the
trial were discontinued from their study pills.
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9.4 Equipoise

That brings us to another concept: when is it ethical to begin a clinical
trial of a new treatment? When there is equipoise. Equipoise  means
that there is about equal evidence that the treatment may provide benefit
as there is that it will not provide benefit. If we are sure the treatment
provides benefit, we should not deny it to people who would be getting
placebo in the trial. Of course we may be wrong. There were critics of
the Women’s Health Initiative who said it was unethical to do such a
trial because it was well known that hormones protect against heart
disease and it would be unethical to deny these hormones to the women
randomized to placebo! Of course we now know that was wrong—the
placebo group did better. At the time WHI was started, the observa-
tional evidence pointed to benefit with regard to heart disease, but it had
never been tested in a clinical trial, which is the “gold standard.” Thus,
there were many people who did not believe that the benefits of hor -
mone replacement were already established by the observational stud-
ies, and it turns out they were right. The researcher, whose obligation it
is to protect human research participants, must believe it is equally
likely that the treatment is better or that the placebo or comparison
treatment is better. The scientific community that judges the research
proposal must believe, based on the “state-of-the-art”, that there is a
reasonable question to be answered.

9.5 Research Integrity

For research conclusions to be valid, data collection procedures must
be rigorously and uniformly administered. No data may be altered
without documentation. If there is a clerical error, the change and rea-
son for it must be documented. Enrollment must be according to strict
and pre-planned standards. Sometimes (fortunately, rarely) there is a
great pressure to enroll subjects in a given time frame, or the r e-
searcher (in violation of the principle of equipoise) really believes the
treatment can help his or her patients, and so “bends” the enrollment
rules. This may invalidate the research and so is unethical. A very sad
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example of this occurred in the National Surgical Adjuvant Breast and
Bowel Project (NSABP). This multi-center study demonstrated that
lumpectomy could be equivalent to mastectomy in hundreds of thou-
sands of women. The Chairman of this study discovered that the Prin-
cipal Investigator in one of the clinical centers had falsified some pa-
tient records so that women who were not eligible to be in the study
based on pre-determined enrollment criteria, were made falsely eligible
to participate. This excellent and extremely important study was initially
tainted when this became known and the Chairman of the study was
charged by the Office of Research Integrity (ORI) with scientific mis-
conduct, even though he had notified the NIH of the problem when he
learned of it. He was subsequently completely cleared, and he was of-
fered multiple apologies. The study has had profound implications on
the treatment of women with breast cancer. Nevertheless, this was a
serious breach of ethics on the part of an investigator in one of the
many centers, that could have invalidated the findings. Fortunately the
results held up even when all the patients from the offending clinic
were excluded.

9.6 Authorship policies

In medical research most original research articles have multiple
authors, since medical research is a collaborative effort. Most medical
journals, and research institutions, have specific and strict authorship
policies (published in journals and/or on websites) many of which em-
body the following elements: (1) co-authors must make an intellectual
contribution to the paper (e.g. conceive the research, perform analyses,
write sections of the paper, or make editorial contributions); (2) all co-
authors must bear responsibility for its contents; (3) co-authors must
disclose potential conflicts of interest (e.g. relevant support from in-
dustry, lectureships, stock ownership). Order of authorship may some-
times be a point of contention and should be discussed by the co-
authors early in the process.
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9.7 Data and Safety Monitoring Boards

Generally, clinical trials have a Data and Safety Monitoring Board
(DSMB) to oversee the trial. These are independent groups of experts
in the relevant disciplines who are in an advisory capacity. Their job is
to monitor the trial and to assure the safety of participants. In a blinded
trial they are the only ones who see the unblinded data at regular, pre-
specified intervals. If they find excessive benefit or harm in one arm of
the trial, they would advise to stop the trial (as happened in the
Women’s Health Initiative). Usually the criteria for stopping a trial due
to harm in the treatment group are more stringent than stopping for
benefit.

9.8 Summary

The ethical conduct of research has many components. New and diffi-
cult ethical questions arise as science advances and new technologies
become available. This brief chapter just begins to give you an idea of
some of the issues involved. Much more detailed information is avail-
able from various websites and NIH has an on-line course in protec-
tion of human subjects. Local IRB’s can you give you information and
additional sources.
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Postscript
A FEW PARTING COMMENTS

ON THE IMPACT OF EPIDEMIOLOGY
ON HUMAN LIVES

Ten years ago a woman with breast cancer would be likely to have a
radical mastectomy, which in addition to removal of the breast and the
resulting disfigurement, would also include removal of much of the
muscle wall in her chest and leave her incapacitated in many ways. To-
day, hardly anyone gets a radical mastectomy and many don't even get
a modified mastectomy, but, depending on the cancer, may get a lum-
pectomy which just removes the lump, leaving the breast intact. Years
ago, no one paid much attention to radon, an inert gas released from
the soil and dissipated through foundation cracks into homes. Now it is
recognized as a leading cause of lung cancer. The role of nutrition in
prevention of disease was not recognized by the scientific community.
In fact, people who believed in the importance of nutrients in the cause
and cure of disease were thought to be faddists, just a bit nutty. Now it
is frequently the subject of articles, books, and news items, and sub-
stantial sums of research monies are invested in nutritional studies.
Such studies influence legislation, as for example the regulations that
processed foods must have standard labeling, easily understood by the
public at large, of the fat content of the food as well as of sodium, vita-
mins, and other nutrients. All this has an impact on the changing eat-
ing habits of the population, as well as on the economics of the food
industry.

In the health field changes in treatment, prevention, and prevailing
knowledge come about when there is a confluence of circumstances:
new information is acquired to supplant existing theories; there is dis-
semination of this information to the scientific community and to the
public at large; and there is the appropriate psychological, economic,
and political climate that would welcome the adoption of the new ap-
proaches. Epidemiology plays a major role by providing the methods by
which new scientific knowledge is acquired. Often, the first clues to
causality come long before a biological mechanism is known. Around
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1850 in London, Dr. John Snow, dismayed at the suffering and deaths
caused by epidemics of cholera, carefully studied reports of such epi-
demics and noted that cholera was much more likely to occur in certain
parts of London than in other parts. He mapped the places where
cholera was rampant and where it was less so, and he noted that
houses supplied with water by one company, the Southwark and
Vauxhall Company, had many more cases of cholera than those sup-
plied by another company. He also knew that the Vauxhall Company
used as its source an area heavily contaminated by sewage. Snow in-
sisted that the city close the pump supplying the contaminated water,
known as the Broad Street Pump. They did so and cholera abated. All
this was 25 years before anyone isolated the cholera bacillus and long
before people accepted the notion that disease could be spread by water.
In modern times, the AIDS epidemic is one where the method of
spread was identified before the infectious agent, the HIV virus, was
known.

Epidemiologic techniques have been increasingly applied to chronic
diseases, which differ from infectious diseases in that they may persist
for a long time (whereas infections usually either kill quickly or are
cured quickly) and also usually have multiple causes, many of which
are difficult to identify. Here, also, epidemiology plays a central role in
identifying risk factors, such as smoking for lung cancer. Such knowl-
edge is translated into public action before the full biological pathways
are elucidated. The action takes the form of educational campaigns,
anti-smoking laws, restrictions on advertisement, and other mecha-
nisms to limit smoking. The risk factors for heart disease have been
identified through classic epidemiologic studies resulting in lifestyle
changes for individuals as well as public policy consequences.

Chronic diseases present different and challenging problems in
analysis, and new statistical techniques continue to be developed to ac-
commodate such problems. New statistical techniques are also being
developed for the special problems encountered in genetics research.
Thus the field of statistic is not static and the field of epidemiology is
not fixed. Both adapt and expand to deal with the changing health
problems of our society.
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Appendix A
CRITICAL VALUES OF CHI-SQUARE, Z, AND t

When Z, χ2, or t value calculated from the observed data is equal to or
exceeds the critical value listed below, we can reject the null hypothesis
at the given significance level, α (alpha).

Selected Critical Values of Chi-Square

Significance Level .1 .05 .01 .001

Critical Value of χ2 2.71 3.84 6.63 10.83

Selected Critical Values of Z

Significance Level
Two-Tailed Test
(One-Tailed Test)

.1
(.05)

.05
(.025)

.01
(.005)

.001
(.0005)

Critical Value of Z 1.64 1.96 2.58 3.29

Selected Critical Values of t

Significance Level
Two-Tailed Test
(One-Tailed Test)

.10
(.05)

.05
(.025)

.01
(.005)

.001
(.0005)

Degrees of Freedom
9

19
100

1000

1.83
1.73
1.66
1.64

2.26
2.09
1.98
1.96

3.25
3.86
2.63
2.58

4.78
3.88
3.39
3.29

NOTE: Interpretation:
If you have 19 degrees of freedom, to reject Ho, at α = .05 with a two-
tailed test, you would need a value of t as large or larger than 2.09; for
α = .01, a t at least as large as 3.86 would be needed. Note that when df
gets very large the critical values of t are the same as the critical values
of Z. Values other than those calculated here appear in most of the
texts shown in the Suggested Readings.
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Appendix B
FISHER’S EXACT TEST

Suppose you have a 2-by-2 table arising from an experiment on rats
that exposes one group to a particular experimental condition and the
other group to a control condition, with the outcome measure of being
alive after one week. The table looks as follows:

Table B.1

Control Experimental

Alive a
1

b
7

Row 1 = R 1 = 8

Dead c
5

d
1

Row 2 = R 2 = 6

Total Col 1 = C1  = 6 Col 2 = C2  = 8 N = 14

87.5% of the experimental group and 16.7% of the control group lived.
A more extreme outcome, given the same row and column totals,
would be

Table B.2

Control Experimental

Alive 0 8 8

Dead 6 0 6

Total 6 8 14

where 100% of the experimental and 0% of the control group lived. An-
other more extreme outcome would be where 25% of the experimental
and all of the controls lived:
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Table B.3
Control Experimental

Alive 6 2 8

Dead 0 6 6

Total 6 8 14

(Any other tables we could construct with the same marginal totals
would be less extreme than Table B.1, since no cell would contain a
number less than the smallest number in Table B.1, which is 1.)

We calculate the exact probability of getting the observed outcome
of the experiment by chance alone (Table B.1), or one even more ex-
treme (as in either Table B.2 or B.3), if it were really true that there
were no differences in survival between the two groups. Fisher's exact
test is calculated by getting the probability of each of these tables and
summing these probabilities.

First we have to explain the symbol “!”. It is called a “factorial.” A
number n! means (n) × (n–1) × (n–2) × . . . × (1). For example, 6! = 6
× 5 × 4 × 3 × 2 × 1. By definition, 0! is equal to 1.

The probability of getting the observations in Table B.1 is

( !) ( !) ( !) ( !)

! ! ! ! !

! ! ! !

1!7!5!1!14!

R R C C

a b c d N
1 2 1 2 8 6 6 8

015984
× × ×
× × × ×

= = .

The probability of getting the observations in Table B.2 is

8 6 6 8
000333

! ! ! !

0!8!6!0!14!
= .

The probability of getting the observations in Table B.3 is

8 6 6 8
009324

! ! ! !

6!2!0!6!14!
= .

The sum of these probabilities is .015984 + .000333 + .009324 =
.025641. Thus we can say that the exact probability of obtaining the
results we observed in Table B.1, or results more extreme, is .025641, if
the null hypothesis was true. We may reject the null hypothesis that the
survival rate is the same in both groups at a significance level p = .026.
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Appendix C
KRUSKAL–WALLIS NONPARAMETRIC TEST

TO COMPARE SEVERAL GROUPS

For example, suppose you have three groups of people each having a
score on some scale. The total number of people in all three groups is
N. The general procedure is as follows: (1) Combine all the scores
from the three groups and order them from lowest to highest. (2) Give
the rank of 1 to the lowest score, 2 to the next lowest, and so on, with N
being assigned to the person with the highest score. (3) Sort the people
back into their original groups, with each person having his assigned
rank. (4) Sum all the ranks in each group. (5) Calculate the quantity
shown below, which we call H. (6) If you have more than five cases in
each group, you can look up H in a chi-square table, with k–1 degree
of freedom (where k  is the number of groups being compared).

Scores On Reading Comprehension

Group A Group B Group C

Scores (Rank) Scores (Rank) Scores (Rank)

98 (13) 80 (9) 120 (21)

70 (6) 60 (2) 110 (17)

68 (5) 106 (15) 90 (12)

107 (16) 50 (1) 114 (19)

115 (20) 75 (8) 105 (14)

65 (4) 74 (7) 85 (10)

(64) 64  (3) 112 (18)

(45) 87 (11)

Sum

of

Ranks
(122)
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H =  
N N + 

R
n   N +  

j

12
1

3 1
2

( )
( ) ( )× ∑

⎛

⎝
⎜

⎞

⎠
⎟ –

H =   *   +   +    12
21 22

64
6

45
7

122
8

3 22
2 2 2

( )
( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ –

=  .7 57

degrees of freedom = 3–1 = 2

If the null hypothesis of no difference in mean rank between groups
was true, the probability of getting a chi-square as large as, or larger
than, 7.57 with 2 degrees of freedom is less than .05, so we can reject
the null hypothesis and conclude the groups differ. (When ties occur in
ranking, each score is given the mean of the rank for which it is tied. If
there are many ties, a correction to H may be used, as described in the
book by Siegel listed in Suggested Readings.)
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Appendix D
HOW TO CALCULATE A

CORRELATION COEFFICIENT

Individual X Y X2 Y2 XY

A 5 7 25 49 35

B 8 4 64 16 32

C 15 8 225 64 120

D 20 10 400 100 200

E 25 14 625 196 350

Σ 73 43 1339 425 737

r =  
N XY X Y

N X X   N Y Y

Σ Σ Σ
Σ Σ Σ Σ

–

– –

( )( )

( ) ( )2 22 2

  =  
( )  ( ) ( )

( )  ( )   ( )  ( )
 =  

5 737 73 43

5 1339 73 5 425 43

3685 3139
1366 2762 2

–

– –

–

  =  
.

 =   =  .
546

37 16 6

546

614
89

( ) ( )

How to Calculate Regression Coefficients:

b =  
XY X Y

N

X
X
N

 ;     a =  
Y
N

 b 
X

N2

Σ Σ Σ

Σ Σ
Σ Σ–

–
–

( ) ( )

( )2

4
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b =   =   =   =  .
737 73 43

5

1339 73
5

737 628
1339 1066

109
273

40
2

–

–

–
–

( ) ( )

( )

a =    
.

 =  .   .  =  .
43
5

40 73
5

8 60 5 84 2 76– –
( )
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Appendix E
AGE-ADJUSTMENT

Consider two populations, A and B, with the following characteristics:

Popula tion Age

Age-
Specific
Rates

# of
People in
Popula tion

# of Deaths in
Population

Crude
Death
Rate

Young 4

1000
004= .

500 .004 × 500 = 2

Old 16

1000
016= .

500  .016 × 500 = 8
A

Total 1000 10 10

1000

Young 5

1000
005= .

667 .005 × 667 = 3.335

Old 20

1000
020= .

333  .020 × 333 = 6.665
B

Total 1000 10 10

1000

Note that the population B has higher age-specific death rates in
each age group than population A, but both populations have the same
crude death rate of 10/1000. The reason for this is that population A
has a greater proportion of old people (50%) and even though the
death rate for the old people is 16/1000 in population A compared with
20/1000 in population B, the greater number of people in that group
contribute to a greater number of total deaths.

To perform age adjustment, we must select a standard population
to which we will compare both A and B. The following examples use
two different standard populations as illustrations. In practice, a stan-
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dard population is chosen either as the population during a particular
year or as the combined A and B population. The choice of standard
population does not matter. The phrase “standard population” in this
context refers to a population with a particular age distribution (if we
are adjusting for age) or sex distribution (if we are adjusting for sex).
The age-specific (or sex-specific, if that is what is being adjusted) rates
for both group A and B are applied to the age distribution of the stan-
dard population in order to compare A and B as if they had the same
age distribution.

Note if you use two different standard populations you get different
age-adjusted rates but relative figures are the same, that is, the age-
adjusted rates for A are lower than for B. This implies that the
age-specific rates for A are lower than for B, but since the crude rates
are the same it must mean that population A is older. Because we know
that age-specific rates for older people are higher than for younger
people, population A must have been weighted by a larger proportion of
older people (who contributed more deaths) in order to result in the
same crude rate as B but in a lower age-adjusted rate.

There are exceptions to the above inference when we consider
groups where infant mortality is very high. In that case it could be that
the young have very high death rates, even higher than the old. In in-
dustrialized societies, however, the age-specific death rates for the old
are higher than for the young.
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STANDARD POPULATION I: Example (more old people than young)

Age
# of
People

Apply
Age-Specific
Death Rates
for
Popula tion A
to Standard
Popula tion

# of Deaths
Expected in
A if It Were
the Same Age
Composi tion
as the
Standard
Popula tion

Apply
Age-Specific
Death Rates
for

Popula tion B
to Standard
Popula tion

# of Deaths
Expected in B
if It Were the
Same Age
Composi tion
as the

Standard
Population

Young 300 × .004 = 1.2 .005 1.5

Old 700   × .016 = 11.2  .020 14.0

Total 1000 12.4 15.5

Age-adjusted rates for: A = 12/1000  B = 15/1000

STANDARD POPULATION II: Example (more young people than old)

Age
# of
People

Apply
Age-Specific
Death Rates
for
Popula tion A
to Standard
Popula tion

# of Deaths
Expected in
A if It Were
the Same
Age
Composi tion
as the
Standard
Popula tion

Apply

Age-Specific
Death Rates
for
Popula tion B
to Standard
Popula tion

# of Deaths
Expected in B
if It Were the
Same Age
Composi tion
as the
Standard
Population

Young 1167 × .004 = 4.67 .005 5.84

Old   833 × .016 = 13.33   .020 16.66

Total 2000 18 22.50

Age-adjusted rates for:

A =

=

18

2000

9

1000

Age-adjusted rates for:

B =

=

22 5

11 25

2000

1000

.

.
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Appendix F
CONFIDENCE LIMITS ON ODDS RATIOS

The 95% confidence limits for an odds ratio (OR) are

OR e .
a

 + 
b

 + 
c

 + 
d× ±

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 96
1 1 1 1

We reproduce here the table from Section 4.12 to use as an example:

Patients with Lung
Cancer

Matched Controls
with Other Diseases

Smokers of 14–24
Cigarettes Daily

475 a 431 b

Nonsmokers 7 c 61 d

(persons with
disease)

(persons without
disease)

OR =   =  .
475 61

431 7
9 6

×
×

Upper 95% confidence limit =

OR e .   +  +  +   ×
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 96
1

475

1

431

1

7

1

61

OR e  =  . e  =  .   .  =  ..    .× × ××( )1 96 405 7949 6 9 6 2 21 21 2.

Lower 95% confidence limit =

OR e  =  .   e  =  .   .  =  ..   . .× × ××( )– –1 96 405 7949 6 9 6 45 4 3

Note :   e  =  
e

 =  ..
.

– 794
794

1
45

Thus, the confidence interval is 4.3 to 21.2.
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Appendix G
“J” OR “U” SHAPED RELATIONSHIP

BETWEEN TWO VARIABLES

Sometimes we may think that a variable is related to an outcome in a J
or U shape, for example weight and mortality. (The index of weight we
use is the body mass index – BMI – which is weight in kilograms di-
vided by the square of the height in meters). A “J” or “U” curve can be
imagined by plotting body mass index against mortality. The J or U
shape means that as BMI goes up, the death rate goes up, but the
death rate also goes up at very low values of BMI, hence the J or U
shape. This may be due to pre-existing illness: people who are on the
very thin side may have lost weight because they are already ill and so
of course they will be more likely to die. Or it may be due to the physio-
logical consequences of very low weight. We can test whether there is a
J curve by including a square term (also known as a quadratic term) in
the Cox equation.

The figure below shows an example of a J shaped relationship
between BMI and some outcome.

Outcome by quintiles of BMI

q1 q2 q3 q4 q5

quintiles of BMI
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As you can see, there is a U shape to the curve. Both those at
lower and higher BMI levels have higher levels of the outcome.

Below are coefficients1 from SHEP (Systolic Hypertension the
Elderly Program). from a Cox regression equation for death among
people in the active treatment group. A quadratic term for BMI was
entered into the Cox model, along with a number of other covariates,
resulting in the following coefficients for BMI:

Coefficient Standard error p value
BMI –0.3257 0.1229 .008
BMI2                   0.0059 0.0020 .003

Because the coefficient for BMI squared is significant , we know
the relationship of BMI to mortality is not linear.

1. To calculate the relative risk of death for a given BMI value
compared to another BMI value we must do the following:

RR = ek (see Section 4.20)

To compare a BMI of 32 to a BMI of 27 if the coefficient for the
square term is significant,
k = linear term coefficient x (BMI1 – BMI2) + square term coeffi-

cient (BMI1
2 – BMI2

2)
k = –0.3257 (32 – 27) + 0.005 (322 – 272) = .1120
ek = 1.12
people with a BMI of 32 are 12% more likely to die than those with

a BMI of 27.

                                                            
1. Wassertheil-Smoller S, Fann C, Allman RM, Black HR, Camel GH,

Davis B, Masaki K, Pressel S, Prineas RJ, Stamler J, Vogt TM, For the
SHEP Cooperative Research Group.  Relation of low body mass to death and
stroke in the Systolic Hypertension in the Elderly Program (SHEP). The Ar-
chives of Internal Medicine 2000;160(4):494-500.
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{Note: if the square term coefficient were not significant, then k =
linear coefficient [BMI1 – BMI2]}

2. To calculate the nadir (lowest point) of the J or U curve:

NADIR = –1/2(linear coefficient/quadratic coefficient)
= –1/2 (–0.3257/0.0059)
= –1/2 x (–55.20) = –27.6 (rounded)

This means that the lowest mortality for this group occurs at a BMI of
27.6. Because of rounding errors the actual nadir reported in the ref-
erence pages was 27.7.

3. Now we may want to get the risk of a given BMI relative to the
nadir.
a) RR of BMI = 25 compared to nadir calculated as

–0.3257 ( 25 – 27.7) + .0059 ( 252 – 27.72) = .0399
ek = 1.04

b) RR of BMI = 30.4
K = –.3257 (30.4 – 27.7) + .0059 (30.42 – 27.72) = .0461
ek = 1.05

c) RR of BMI below nadir and above nadir is elevated
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Appendix H
DETERMINING APPROPRIATENESS OF

CHANGE SCORES

(1) To determine if change scores are appropriate:

Consider a group of 16 patients who have the following scores on a
scale assessing depressive symptoms; a retest is given shortly after to
determine the variability of scores within patients:

Table H.1

Patient #
First Test

Scale Score
Retest
Score

1 12 13

2 16 15

3 22 21

4 24 23

5 30 29

6 18 19

7 16 15

8 12 12

9 14 15

10 18 18

11 24 24

12 30 29

13 18 19

14 16 15

15 14 15

16 10 11

Mean 18.38 18.31
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An analysis of variance indicates the following (Table H.2):

Table H.2

Source of
Variation SS df MS F P-value

Patients 1014.7188 15 67.6479 156.8647 0.0000

Test retest 0.0313 1 0.0313 0.0725 0.7915

Error 6.4688 15 0.4313

Total 1021.2188 31

σ2
between patients = (67.65 – .43)/2 = 33.61

σ2
between patients + error 33.61/(33.61 + .43) = .987

This is greater than .5, so that the use of change scores is appropriate.
[Note: σ2, or the variance, is the MS (mean square) from the analysis
of variance.]

Next, the patients are divided into two groups; one group is given a
dietary intervention lasting 10 weeks, while the other group serves as a
control group. The scale is administered again after 10 weeks to both
groups, with the following results:
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Table H.3

Control Group Treatment Group

Patient
#

Pre-
test

Post-
test

Change
Score

Patient
#

Pre-
test

Post-
test

Change
Score

1 12 13 1 9 14 7 –7

2 16 15 –1 10 18 10 –8

3 22 20 –2 11 24 7 –17

4 24 18 –6 12 30 5 –25

5 30 25 –5 13 18 10 –8

6 18 16 –2 14 16 8 –8

7 16 12 –4 15 14 4 –10

8 12 10 –2 16 10 5 –5

Mean 18.75 16.13 –2.63 18 7 –11

Vari-
ance

38.79 23.27 5.13 40.00 5.14 44.57

s.d. 6.23 4.82 2.26 6.32 2.27 6.68

(2) To calculate coefficient of sensitivity to change, do a repeated
measures analysis of variance on the scores in the treatment
group ; to get the error variance, calculate the variance of the
change scores.

Table H.4

Source of
Variation SS df MS F P value

Between
test/retest

484 1 484.0000 21.4430 0.0004

Within
patients

316 14 22.5714

Total 800 15
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Coefficient of sensitivity = variance of change scores in treatment
group/(variance of change scores + error variance) =

44 57

44 57 22 29
67

.

( . + . )
 =  .

(the 44.57 is obtained from in last column of Table G.3).

(3) Effect size  = mean of the change scores/ s.d. of pretest scores:

in the treatment group = –11/6.32 = –1.74 (there was a decline in de-
pression symptom score  of 1.74 pretest standard deviation units).

(4) Guyatt's responsiveness measure25 is (mean change scores in the
treatment group)/(s.d. of change scores in stable subjects). We are as-
suming here that the control group is the group of stable subjects, a l-
though generally “stable subjects” refers to subjects who are stable
with regard to some external criterion.

G =  
.

 =  .
–

–
11

2 26
4 86

(5) Comparison with a control group: The effect size for the treatment
group is –1.74, so clearly it exceeds the control group change, which is
–2.63/6.23 = –.42. If we calculate the ratios of treatment to control
group for the above indices of responsiveness, we will find in this ex-
ample that they are very similar.

For effect size the ratio is –1.74/–.42 = 4.14. For Guyatt's statistic it
is –4.86/–1.16 = 4.19. (The –1.16 was obtained by mean change in
control group divided by standard deviation of change scores in control
group; i.e., = –2.63/2.26.)

For the coefficient of sensitivity, it is .67/.14 = 4.78. (The .14 was
obtained by doing an analysis of scores in the control group, not
shown here, so take it on faith, or calculate it as a check on the accu-
racy of this.)
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Appendix I
GENETIC PRINCIPLES

Everything should be made as simple as possible,
but not one bit simpler.

(attributed to Albert Einstein, 1879–1955)

1. DNA (deoxyribonucleic acid) is made up of four units—or nucleo-
tides—that are molecules composed of carbon, hydrogen, oxygen
and phosphorous. These molecules, called bases, are adenine,
guanine, thymine and cytosine, and are denoted by the letters A, G,
T and C.

2. The DNA is arranged in two strands twisted in a double helix
form, such that the nucleotides AGCT pair with each other in fixed
ways. An A always pairs with T and C always pairs with G. These
are called base pairs. If one strand of the double helix were strung
out in a line it might look like this:

AATTCGTCAGTCCC, The other strand that pairs with it would be:
TTAAGCAGTCAGGG.

3. There are 3 billion such base pairs (or 6 billion bases) in the hu-
man genome (which refers to all the genetic material in humans).
These 3 billion base pairs are organized into 23 chromosome pairs
(one from the mother and one from the father), which are in every
living cell in the body.

4. Out of these 3 billion base pairs there are about 30,000 genes (the
estimate varies—in 1970 it was 300,000; in the 1990’s it was
100,000; subsequently, after the decoding of the human genome, it
was thought to be 30,000; more recently, the estimate has been
upped again to maybe 45,000), which are sequences of base pairs
of different lengths. The remaining sequences are mostly “junk”
DNA, though some sequences, not genes in themselves, serve
regulatory functions.
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5. Genes instruct the cell how to make proteins (or polypeptide chains)
that are composed of amino acids.

6. A group of 3 bases is called a codon. A codon codes for a single
amino acid. Proteins consist of several or many amino acids. Since
there are 4 different letters (nucleotides), one would think there
should be 4x4x4x4 or 64 different amino acids, but there are only
20 (don’t ask why). The basis of all life is these 20 amino acids.

7. Genes make proteins by “coding” for amino acids. This means
that the gene directs the assembly of the protein molecule by speci-
fying the sequence of amino acids and how they should bind to
make the particular protein, an enzyme for example that converts
cholesterol to estrogen or a neurotransmitter, or bone.

8. A bunch of codons (each made up of 3 bases and each coding for a
specific one of the 20 amino acids) is called an exon. Thus, an
exon is composed of many codons, each coding for a single amino
acid, and together coding for a specific protein.

9. In between exons in a gene there are other sequences of letters
called introns. Introns are sections of DNA (stretches of the letters
A,G,C,T) which do not code for amino acids. It is not known what
the functions of introns are, if any.

10. A gene then, consists of exons and introns. Before it can actually
direct the manufacture of a protein, it is transcribed within the nu-
cleus of the cell into RNA (ribonucleic acid) which is an exact copy
of a single strand of the DNA, (except that instead of the base
thymine, T, it contains uracil, U). This RNA then gets out of the
nucleus and into the body (cytoplasm) of the cell where the proteins
will be manufactured. The incredible thing is that then the parts of
the RNA that are not exons (or coding regions), are removed and
this is now called mRNA (messenger RNA). So at the end of this
transcription process, all the introns are spliced out and only the
exons (coding regions) remain, ready to direct the materials within
the cell, outside of the nucleus, to manufacture the chain of amino
acids which constitute the particular protein coded by that particu-
lar gene. Once the protein is manufactured, it is either used by the
cell or transported in vesicles to the membrane of the cell where it is
expelled into the tissue or blood.
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11. When we say a gene is “expressed” it means that mRNA and a
protein is made. Only about 3% of the genome (i.e. 3% of all the
DNA) is expressed; the rest is either regulatory or is junk (as far as
we know now).

12. Since not all of the DNA is composed of genes, finding genes em-
bedded in all that DNA is a major challenge. But let us say you find
a sequence of bases that is ATG, which codes for the amino acid
methionine. This is also known as the Start Codon because it tells
the cell to start making its protein from that point on; the cell con-
tinues making the amino acids in the sequence specified by the
codons, until it encounters the Stop Codon which has one of three
forms: TAA, TAG, or TGA, at which point it stops.

13. There are many redundancies in the system, and the third position
is “wobbly,” meaning for example, that even if instead of TCA, you
have a TCC, you could still make the same amino acid (serine). On
the other hand, it might be that a single change of a letter, say
having a T where most people have a C, could mess up the whole
protein because an amino acid is missing or a different one is
made.

14. These variations between people in one single letter of the code are
known as single nucleotide polymorphisms (SNPs, pronounced as
snips). It is estimated that there may roughly be one SNP per 1000
bases of DNA. Assume the SNP can come in two forms—i.e. two
alleles, meaning a particular spot could have, say, the nucleotide A
or a T. If you are looking at a stretch of DNA 2000 bases long,
there could be 4 variations of SNPs, 2 in the first 1000 bases and 2
in the second 1000 bases. Some SNPs are normal variants in a
population, some may predispose to disease, and some may cause
disease.

15. Polymorphisms, then, are variants of a gene or variants at a cer-
tain place or locus within a gene, most of which are harmless vari-
ants. A particular polymorphism for example may consist of two
alternate forms (alleles) at a particular locus; for example you
could have either an A or a C at that locus. Polymorphisms may
also consist of insertions of a nucleotide at a particular place, or a
deletion of a nucleotide, or other variations.
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16. Scientists are beginning to look at blocks of DNA—long stretches
of DNA at a particular location on a chromosome which have a
distinctive pattern of SNPs. These are called haplotypes. Haplotypes
of interest are sequences of alleles that are close together on the
same chromosome and thus tend to be inherited as a block. It may
be possible to look at the association with disease of the SNPs that
differentiate some common patterns of haplotypes, rather than
looking at the association of each individual SNP with disease.
Construction of haplotype maps (“hapmaps”) is an active area of
research that shows much promise in being able to identify disease
polymorphisms more efficiently.

17. The whole human genome then consists of 30,000 or so genes plus
all the other genetic material which have no, or unknown, func-
tion, which make up the 3 billion base pairs. Each and every nucle-
ated cell in the body has the same 3 billion base pairs (except the
sperm and the egg, each of which have half of that). So the ques-
tion might be if each cell has the same DNA why doesn’t each cell
make the same proteins? Why doesn’t a liver cell make insulin?
Why doesn’t a brain cell make bone? That’s because part of a
gene, or sometimes a sequence at some distance away from the
gene, tells the gene when to turn on or off—that is, it regulates the
expression of the gene.

18. During cell division (mitosis), in all cells except the sperm and egg,
there is first, a duplication of the chromosomes and then a segre-
gation of the duplicated parts so that when the cell splits in half the
two new daughter cells will each have a complete set of 23 pairs of
chromosomes. The two members of each pair carry copies of the
same genes (and are homologous), but may differ in certain spots
(loci) on the chromosome because one member of the pair comes
from the mother and one from the father.

19. In the case of germ cells in the testes or ovaries, which are destined
to become sperm and egg, the cell division is called meiosis, and in
this kind of cell division, there is no duplication of the chromo-
somes before division, so that when sperm and egg meet, only one
set of chromosomes results (one chromosome of each pair in the
offspring comes from the sperm and one from the egg). During
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meiosis, the two homologous chromosomes in the chromosome
pair come very close to each other and little bits of DNA cross over
from one chromosome of the pair to the other chromosome of the
pair. Now remember this is in the germ cell (the precursor cell of
the sperm and egg). This germ cell than splits (by meiosis, rather
than mitosis) So when the sperm is finally formed, it has only one
member of each pair of chromosomes, but this one chromosome
of the pair is just a little different than the original chromosome
which is in every cell of the parent body, because of the exchange of
some of the DNA that took place during meiosis. (This is called r e-
combination). Something similar happens to the egg, and when the
two meet in fertilization and form a gamete (a single fertilized cell
from which the human organism will develop) this cell now has a
full set of 23 pairs of chromosomes, one in each pair from the
mother and one from the fa ther.

20. Recombination is important in the discovery of genes related to dis-
ease because of the following: if the alleles at two loci on the chro-
mosome are close together, they will be inherited together but if they
are far enough apart, they are more likely to recombine (cross
over) during meiosis and will be inherited independently of each
other. This state of affairs helps scientists to locate genes. Recom-
bination due to the crossing over of part of the DNA from one
chromosome of a pair to the other, happens only during meiosis in
the germ cell. Thereafter, every time a cell reproduces, and they do
all the time, it splits in two with exactly the same copies of the com-
plement of 23 chromosome pairs.

21. Mutations are errors in the replication of the DNA. They arise
spontaneously very rarely—about 1 in 1,000,000,000 bases, but en-
vironmental exposures may cause mutations. Mutations may be
somatic, i.e. in cells of the living organisms, in which case they die
out when the organism dies, or in germ cells which go on to be
sperm or egg and in which case they get transmitted on through
the generations. Mutations may be of several types and they may
have no effect, for example if they happen in an intron, or they may
change the amino acid being produced and thus may alter the pro-
tein. A mutation may delete a single nucleotide, insert a single nu-
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cleotide or substitute one nucleotide for another, say substituting a
C for a T. An insertion or deletion mutation may cause a “frame
shift,” meaning that the start and/or end of the coding region
would be different and so a different sequence of amino acids
would be formed. In a “missense mutation” one of the 20 amino
acids is replaced by another (thereby changing the protein); in a
“nonsense” mutation, a stop codon appears prematurely. As noted
before, some mutations have no effect on the organism and some
may cause or pre-dispose to disease.

In fact, it’s miraculous that when so much can go wrong, so little
actually does!
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pen Publishers, 2000.
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Absolute risk, 103
Accuracy of test, 131
Additive law of probability, 27
Additive model interaction

effects, 124-128
Age-adjusted rates, 90-92
Age-adjustment, 207-209
Age-specific annual mortality

rate, 90
Alternate hypothesis, 11
Alleles, 173
Allele-sharing approach, 179
Alpha error, 16
Alternate hypothesis, 145-146
Amino acids, 222
Analysis of variance (ANOVA),

69-72
two-factor, see Two-factor

ANOVA
ANOVA, see Analysis of variance
AR (attributable risk), 107-109
Assertions, 5
Association, 78
Association studies, 175-178,

180-181
Attributable risk (AR), 107-109
Authorship policies, 195-197

Base pairs, 221
Bayesian probability, 24
Bell-shaped curve, 40-41
Beneficence, 191
Beta error, 16
Between-groups variance, 70
Bonferroni procedure, 72-74

Candidate genes, 177, 185
Case-control study, 9, 97

calculation of relative risk
from, 104-107

Categorical variables, 10
Causal pathways, 79-81
Cause-specific annual mortality

rate, 89
Cell division, 224
CentiMorgan (cM), 176
Central tendency, 37
Change scores, 161, 165

determining appropriateness
of, 217-220

Chi-squares, 31-32
critical values of, 200

Chi-square test, 29-33
Chromosomal location, 176
Clinical significance, 153
Clinical trials, 9, 10, 141-160

as “gold standard,” 146-
147

randomized, 141-143
size of, 151-153

cM (centiMorgan), 176
Codons, 222
Coefficient of sensitivity, 165,

219-220
Cohort, 94, 101
Cohort study, 9, 10
Comparisons between two groups,

60
Concordance rates, 174
Conditional probability, 23-24
Confidence intervals, 53-56
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Confidence intervals (continued)
around difference between two

means, 58-59
for proportions, 57-58

Confidence limits, 55
on odds ratio, 211

Confounding by indication,
116-117

Confounding variables, 111-112
Conjectures and refutations,

method of, 5
Consent, informed, 192-194
Contingency table, 29-30
Continuous variables, 10
Control group, 143, 166-167
Correlation coefficient, 78-79

calculating, 205-206
connection between linear

regression and, 84
Cox proportional hazards model,

120-122
Critical value

of chi-square, 32-33
of Z, 62

Cronbach's alpha, 163
Cross-sectional study, 8, 9, 97

longitudinal study versus, 98-
101

Crude annual mortality rate, 89
Cutoff point, 136-139

Data and Safety Monitoring
Board (DSMB), 196

Death rate, 89
Deductive inference, 1-2
Degrees of freedom (df), 56-57
Deoxyribonucleic acid (DNA),

221
Dependent variables, 96

Descriptive epidemiology, 87
df (degrees of freedom), 56-57
Difference between two means

confidence intervals around,
58-59

sample size calculation for
testing, 159-160

standard error of, 46-47
t-test for, 62-64

Difference between two
proportions, sample size
calculation for, 158-159

Differences, distribution of, 46
Discrete variables, 10
Distribution of differences, 46
DNA (deoxyribonucleic acid),

221
Double-blind study, 142
DSMB (Data and Safety

Monitoring Board), 196

Effect size, 154, 166
Epidemiology

defined, 87
descriptive, 87
genetic, see Genetic

epidemiology
impact of, on human lives,

197-198
molecular, 172
uses of, 87-88

Epistasis, 187
Equipoise, 194
Error mean square, 72
Errors, types of, 14
Ethics, research, statistics and,

189-196
Ethnicity, 181
Exons, 222
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Expected frequency, 20
Experimental studies, 8

Factorial notation, 202
False-negative rate, 130
False-positive rate, 130
Falsification, 5
Fisher's exact test, 33, 201-202
F ratio, 70
Frequency, expected, 20

Genes, 221-222
Genetic epidemiology, 171-187

overview of, 171-173
Genetic linkage analysis, 175-178
Genetic principles, 221-226
Genome, 221
Genomics, 172
Guyatt's responsiveness measure,

220

Haplotype maps, 185-186
Haplotypes, 224
Hazard ratio, 121
Heritability index, 174
Heterogeneity, 186
Human lives, impact of

epidemiology on,
197-198

Human research subjects,
protection of, 190-192

Hypothetico-deductive method, 2

Incidence rate, 93
Independent variables, 96
Inductive inference, 2, 7-8
Inference, 1

deductive, 1-2
inductive, 2, 7-8

Informed consent, 192-194
Integrity, research, 194-195
Intention-to-treat analysis, 150-

151
Interaction(s), 124-128

between two variables, 75-76
Introns, 222

Joint probability, 21
Justice, 192

Kaplan-Meier survival curves,
117

Kappa, 35-36
Kruskal-Wallis test, 77-78, 203-

204

Least-squares fit, 82
Life table methods, 117-120
Likelihood ratio (LR), 26

of a negative test, 131
of a positive test, 131

Linear regression
connection between, and

correlation
coefficient, 84

multiple, 84-85
Linkage disequilibrium, 176, 182
Linkage statistic, 178-179
Linkage studies, 173, 175-178
LOD score, 178-179
Logistic regression, multiple,

113-116
Longitudinal study, 9, 10

cross-sectional study versus,
97-101

LR, see Likelihood ratio

Matched pair t-test, 66-67
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Matching, 112-113
McNemar test, 34-35, 184
Mean(s), 37

difference between two, see
Difference between
two means

regression toward the, 147-149
standard error of, 43, 50

Mean square, 72
Median, 37
Meiosis, 224
Mitosis, 224
Mode, 37
Molecular epidemiology, 172
Morbidity, 93
Mortality rates, 88-90
Multiple linear regression, 84-85
Multiple logistic regression,

113-116
Multiplicative law of probability,

27
Multiplicative model interaction

effects, 124-128
Multivariate models, selecting

variables for, 122-124
Mutations, 225-226
Mutually exclusive events, 20-21

Negative test, 129
likelihood ratio of a, 131
predictive value of a, 130

Nonparametric linkage methods,
179

Nonparametric test, 67
Normal distribution, 40-41

standardized, 47-51
Null hypothesis, 6, 11-12

testing, 12-14

Observational studies, 8
Observations, 1
Odds ratio (OR), 25, 106

confidence limits on, 211
One-tailed test, 64

two-tailed test versus, 145-146
One-to-one matching, 112
OR, see Odds ratio

PAR (population attributable
risk), 107-109

Parametric linkage analysis, 179
Patient's perception, 161
Penetrance, 186
Person-years of observation, 94-95
Phenocopies, 186-187
Phenotype, 186
Placebo, 141
Point prevalence, 92
Polymorphisms, 223-224
Pooled estimate, 46
Population attributable risk

(PAR), 107-109
Population stratification, 181
Population values, 52-53
Positive test, 129

likelihood ratio of a, 131
predictive value of a, 130, 132

Posttest probability of disease,
132

Power, statistical, 154
Predictive value

of a negative test, 130
of a positive test, 130, 132

Pretest probability of disease, 132
Prevalence rate, 92
Probabilistic model, 6-7
Probability(ies), 19-20

Bayesian, 24
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combining, 20-23
conditional, 23-24
of disease, pretest and

posttest, 132
joint, 21

Propensity analysis, 116-117
Proportions

confidence intervals for, 57-58
difference between two,

sample size
calculation for,
158-159

standard errors of, 57
Z-test for comparing two, 60-

62
Prospective studies, 9, 10, 97,

105
calculation of relative risk

from, 103-104
Proteomics, 172
Psychometrics, 164
p value, 152

Quality of life, 161-169
need for standards of research

in, 168-169
pitfalls in assessing, 167-169
scale construction for

assessing, 162-167

Randomization, purposes of, 143-
144

Randomized assignment,
performing, 144-145

Randomized clinical trials,
141-143

Range of data, 41
Rate, 89

Receiver operating characteristic
(ROC) curve, 139

Recombination, 225
References, 227-231
Regression, 82-84

toward the mean, 147-149
Regression coefficients, 84

calculating, 205-206
Regression lines, 82
Relative risk (RR)

calculation of, from
prospective studies,
103-104

estimate of, from case-control
studies, 104-107

measures of, 101-103
Reliability, 162-164
Repeatability, 162
Research, need for standards of,

in assessing quality of
life, 168-169

Research ethics, statistics and,
189-196

Research integrity, 194-195
Research subjects, human,

protection of, 190-192
Respect for persons, 191
Response bias, 109-111
Responsiveness, 165-167
Retrospective studies, 9, 105
Ribonucleic acid (RNA), 222
Risk factors, 102
RNA (ribonucleic acid), 222
ROC (receiver operating

characteristic) curve, 139
RR, see Relative risk

Sample size calculation, 153-158
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for difference between two
proportions, 158-159

for testing difference between
two means, 159-160

Sample values, 52-53
Scientific method, 1-17
Scientific reasoning, logic of, 1-6
Screening, 129-139
Self-report, 161
Sensitivity, 130
Significance level, 15-16
Single-blind study, 142
Single nucleotide polymorphisms

(SNPs), 180, 223-224
SMR (standardized mortality

ratio), 94
SNPs (single nucleotide

polymorphisms), 180,
223-224

Spearman-Brown formula,
163-164

Specificity, 130
Standard deviation, 38

difference between standard
error and, 42-45

meaning of, 40-41
Standard error

difference between standard
deviation and, 42-45

of difference between two
means, 46-47

of mean, 43, 50
of proportion, 57

Standardized mortality ratio
(SMR), 94

Standardized normal distribution,
47-51

Standard score, 47-51
Statistical methods, 7-8

Statistical power, 154
Statistical significance, 153
Statistics, 6, 86

research ethics and, 189-196
Studies

design of, 8-10
types of, 96-97

Suggested readings, 233-236
Survival analysis, 117-120
Survival curves, 118-119
Survival time, 120

TDT (transmission disequilibrium
tests), 181-185

Theory, 4-5
Transmission disequilibrium tests

(TDT), 181-185
t statistic, 51-52

critical values of, 199
t-test

for difference between two
means, 62-64

matched pair, 66-67
performing, 64-66
use of, 67-69

Twin studies, 173-175
Two-factor ANOVA, 74-75

example of, 76-77
Two-tailed test, 64

one-tailed test versus, 145-146
Type I error, 14, 16-17

consequences of, 16-17
Type II error, 14, 16-17

consequences of, 16-17

Validity, 164-165
Variability, 38
Variables, 86

categorical, 10
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confounding, 111-112
continuous, 10
dependent, 96
discrete, 10
independent, 96
interaction between two,

75-76
multiplicity of, 167-168
selecting, for multivariate

models, 122-124
Variance, 38, 163

analysis of, see Analysis of
variance

between-groups, 70
within-groups, 70

Venn diagrams, 22

Whole genome scan, 176-177
Wilcoxon matched-pairs rank

sums test, 67
Within-groups mean square, 72
Within-groups variance, 70

Yates’ correction and calculation,
33

Z score, 47-51
critical values of, 199

Z-test for comparing two
proportions, 60-62
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